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Preface

This document contains the proceedings of the Training Workshop on
Nondeterministic Approaches and their Potential for Future Aerospace Systems held at
NASA Langley Research Center, Hampton, Virginia, May 30-31, 2001. The workshop was
jointly sponsored by Old Dominion University and NASA. Workshop attendees came from
NASA, other government agencies, industry, and universities. The objectives of the
workshop were to review the diverse activities in nondeterministic approaches, uncertainty
management methodologies, reliability assessment and risk management techniques, and to
identify their potential for future aerospace systems.

Ahmed K. Noor

Old Dominion University

Center for Advanced Engineering Environments
Hampton, Virginia
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INTRODUCTION

Increasingly more complex systems are being built and conceived by high-tech
industries. Engineers are asked to design faster, and to insert new technologies into these
systems. Increasing reliance is being made on modeling, simulation and virtual prototyping
to find globally optimal designs that take uncertainties and risk into consideration.
Conventional computational and design methods are inadequate to handle these tasks.
Therefore, intense effort has been devoted in recent years to nontraditional methods for
solving complex problems with system uncertainties.

An attempt is made in this overview to give broad definitions to the terms and to set
the stage for the succeeding presentations. The presentation is divided into four parts (see
Figure 1). In the first part, examples of future aerospace systems are given, along with some
of their major characteristics and design drivers. The second part describes the synergistic
coupling of the key technologies that can significantly enhance the modeling and simulation
technologies. The third part describes the future research and learning environments required
for the realization of the full potential of nondeterministic approaches. The fourth part lists
the objectives of the workshop and some of the sources of information on nondeterministic
approaches.

» Characteristics of Future Aerospace Systems

* Modeling and Simulation Technologies

* Research and Learning Environments

* Workshop

Figure 1



EXAMPLES OF FUTURE AEROSPACE SYSTEMS AND SOME OF THEIR
CHARACTERISTICS

The realization of NASA’s ambitious goals in aeronautics and space with the current
national budget constraints will require new kinds of aerospace systems and missions that use
novel technologies and manage risk in new ways. Future aerospace systems must be
autonomous, evolvable, resilient, and highly distributed. Two examples are given in Figure
2. The first is a biologically inspired aircraft with self-healing wings that flex and react like
living organisms. It is built of a multifunctional material with fully integrated sensing and
actuation, and unprecedented levels of aerodynamic efficiencies and aircraft control. The
second is an integrated human-robotic outpost, with biologically inspired robots. The robots
could enhance the astronaut’s capabilities to do large-scale mapping, detailed exploration of
regions of interest, and automated sampling of rocks and soil. They could enhance the safety
of the astronauts by alerting them to mistakes before they are made, and letting them know
when they are showing signs of fatigue, even if they are not aware of it.
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DEFINITIONS OF UNCERTAINTY AND A BRIEF HISTORICAL ACCOUNT OF
UNCERTAINTY MODELING

Uncertainty is an acknowledged phenomenon in the natural and technological worlds.
Engineers are continually faced with uncertainties in their designs. However, there is no
unique definition of uncertainty. A useful functional definition of uncertainty is: the
information/knowledge gap between what is known and what needs to be known for optimal
decisions, with minimal risk.

Prior to the twentieth century, uncertainty and other types of imprecisions were
considered to be unscientific, and therefore, not addressed. It was not until the beginning of
the twentieth century that statistical mechanics emerged and was accepted as a legitimate
area of science. It was taken for granted that uncertainty is adequately captured by
probability theory. It took sixty years to recognize that the conceptual uncertainty is too deep
to be captured by probability theory alone and to initiate studies of non-probabilistic
manifestations of uncertainty, as well as their applications in engineering and science. In the
last two decades, significant advances have been made in uncertainty modeling, the level of
sophistication has increased, and a number of software systems have been developed.
Among the recent developments are the perception-based information processing and
methodology of computing with words (Figure 3).
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TYPES OF UNCERTAINTIES

A number of different uncertainty representations and classifications have been
proposed. Among these classifications are the three-type classification — statistical, model,
and fundamental uncertainties; the two type classification — uncertainty of information and
uncertainty of the reasoning process; and the six-type classification (see Figure 4):

»  Probabilistic uncertainty, which arises due to chance or randomness,

»  Fuzzy uncertainty due to linguistic imprecision (e.g., set boundaries are not
sharply defined),

*  Model uncertainty which is attributed to lack of information about the model
characteristics,

" Uncertainty due to limited (fragmentary) information available about the system
(for example, in the early stage of the design process),

* Resolutional uncertainty which is attributed to limitation of resolution (e.g.,
sensor resolution), and

"  Ambiguity (i.e., one to many relations).

Figure 4



MANAGING UNCERTAINTIES

While completely eliminating uncertainty in engineering design is not possible,
reducing and mitigating its effects have been the objectives of the emerging field of
uncertainty management. The field draws from several disciplines including statistics,

management science, organization theory, and inferential thinking (see Figure 5).

Figure 5



NONDETERMINISTIC ANALYSIS APPROACHES

Depending on the type of uncertainty and the amount of information available about
the system characteristics and the operational environments, three categories of
nondeterministic approaches can be identified for handling the uncertainties. The three
approaches are (see Figure 6): probabilistic analysis, fuzzy-set approach, and set theoretical,
convex (or anti-optimization) approach. In probabilistic analysis, the system characteristics
and/or the source variables are assumed to be random variables (or functions), and the joint
probability density functions of these variables are selected. The main objective of the
analysis is the determination of the reliability of the system.

If the uncertainty is because of a vaguely defined system and/or operational
characteristics, imprecision of data, and subjectivity of opinion or judgment, fuzzy-set
treatment is appropriate. Randomness describes the uncertainty in the occurrence of an event
(such as damage or failure).

When the information about the system and/or operational characteristics is
fragmentary (e.g., only a bound on a maximum possible response function is known), then
convex modeling is practical. Convex modeling produces the maximum or least-favorable
response and the minimum or most favorable response of the system under the constraints
within the set-theoretic description.

Figure 6



ENHANCING THE MODELING AND SIMULATION TECHNOLOGIES

The synergistic coupling of nondeterministic approaches with a number of key
technologies can significantly enhance the modeling and simulation capabilities and meet the
needs of future complex systems. The key technologies include: Virtual product
development for simulating the entire lifecycle of the engineering system, reliability and risk
management, intelligent software agents, knowledge and information, high performance
computing, high capacity communications, human computer interfaces, and human
performance.

BRan
Performance”

Figure 7



VIRTUAL PRODUCT DEVELOPMENT

Current virtual product development (VPD) systems have embedded simulation
capabilities for the entire lifecycle of the product. As an example, the top-level system
process flow for a space transportation system is shown in Figure 8. In each phase
uncertainties are identified and appropriate measures are taken to mitigate their effects.
Information Technology will change the product development from a sequence of distinct
phases into a continuous process covering the entire lifecycle of the product with full
interplay of information from beginning to end and everywhere throughout.

Figure 8 .
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RELIABILITY ASSESSMENT

Reliability is defined as the probability that a component (or a system) will perform
its intended function without failure for a specified period of time under designated operating
conditions. Failure rate or hazard rate is an important function in reliability analysis since it
provides a measure of the changes in the probability of failure over the lifetime of a
component. In practice, it often exhibits a bathtub shape (see Figure 9).

~ Reliability assessment includes: selection of a reliability model, analysis of the
model, calculation of the reliability performance indices, and evaluation of results, which
includes establishment of confidence limits and decision on possible improvements.

Figure 9
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RISK MANAGEMENT PROCESS

Risk is defined as the uncertainty associated with a given design, coupled with its
impact on performance, cost and schedule. Risk management is defined as the systems
engineering and program management tools that can provide a means to identify and resolve
potential problems.

The risk management process includes the following task (Figure 10):

" Risk planning: development of a strategy for identifying risk drivers.

» Risk identification: identifying risk associated with each technical process.

" Risk analysis: isolating the cause of each identified risk category and
determining the effects.

The combination of risk identification and risk analysis is referred to as risk

assessment.
" Risk handling: selecting and implementing options to set risk at acceptable
levels.

» Risk monitoring: systematically tracking and evaluating the performance of
risk handling actions.

Figure 10
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ROBUSTNESS

Robustness is defined as the degree of tolerance to variations (in either the
components of a system or its environment). A robust ultra-fault-tolerant design of an
engineering system is depicted in Figure 11. The performance of the system is relatively
insensitive to variations in both the components and the environment. By contrast, a non-
robust design is sensitive to variations in either or both.
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Figure 11

13



TERAMAC CONFIGURABLE CUSTOM COMPUTER

An example of a robust, ultra-fault-tolerant system is the Teramac Computer which is
a one Tera Hertz massively parallel experimental computer built at Hewlett-Packard
Laboratories to investigate a wide range of computational architectures (Figure 12). It
contains 22,000 (3%) hardware defects, any one of which could prove fatal to a more
conventional machine. It incorporates a high communication bandwidth that enables it to
easily route around defects. It operates 100 times faster than a high-end single processor
workstation (for some of its configurations).

Teramac Configurable Custom Computer

» Massively parallel experimental
computer built at Hewlett-Packard Labs

» Contains 220,000 hardware defects

 Incorporates a high-communication
bandwidth that enables it to easily
route around defects

l» Operates 100 times faster than a high-end
single-processor workstation (for some of
its configurations

Figure 12
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KEY COMPONENTS OF ADVANCED SIMULATION AND MODELING
ENVIRONMENTS

The realization of the full potential of nondeterministic approaches in modeling and
simulation requires an environment that links diverse teams of scientists, engineers, and
technologists. The essential components of the environment can be grouped into three
categories (Figure 13): intelligent tools and facilities, nontraditional methods, and advanced

interfaces.

Figure 13
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INTELLIGENT TOOLS AND FACILITIES

These include high fidelity — rapid modeling, lifecycle simulation and visualization
tools, synthetic immersive environment; automatic and semiautomatic selection of software
and hardware platforms; computer simulation of physical experiments and remote control of
these experiments. In all of these tools, extensive use should be made of intelligent software
agents and information technology (Figure 14).

Figure 14
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ADVANCED HUMAN/COMPUTER INTERFACES

Although the WIMP (windows, icons, menus, pointing devices) paradigm has
provided a stable global interface, it will not scale to match the myriad from factors and uses
of platforms in the future collaborative distributed environment. Perceptual user interfaces
(PUI) are likely to meet those needs. PUI’s integrate perceptive, multimodal and multimedia
interfaces to bring human capabilities to bear on creating more natural intuitive interfaces.
They enable multiple styles of interactions, such as speech only, speech and gesture, vision,
and synthetic sound, each of which may be appropriate in different applications (Figure 15).
These new technologies will enable broad uses of computers as assistants or agents that will
interact in more human-like ways.

* Integrates perceptive, multimodal and multimedia
interfaces to bring human capabilities to bear on
creating more natural and intuitive interfaces

* Enables multiple styles of interactions and broad
uses of computers as assistants

Figure 15
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NONTRADITIONAL METHODS

These include multi-scale methods, strategies for highly coupled multi-physical
problems, and nondeterministic approaches for handling uncertainty in geometry, material
properties, boundary conditions, loading and operational environments (Figure 16).

Figure 16
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PRINCIPLE OF COMPLEXITY

One of the important consequences of uncertainty is its effect on precision. Three
types of models can be identified depending on the complexity and the precision, namely:
mathematical models, model-free methods, and fuzzy systems (Figure 17). In a typical
complex system a combination of the three should be used. As the uncertainty and/or
complexity of an engineering system increases, the ability to predict its response diminishes,
until a threshold is reached beyond which precision and relevance become almost mutually
exclusive. Consider, for example, numerical simulations in which sophisticated
computational models are used for predicting the response, performance, and reliability of
the engineering system, but the system parameters are little more than guesses. Such
simulations can be characterized as Correct but Irrelevant Computations (CBIC); that is,
forcing precision where it is not possible.

sz“';y"fSysibsms

Figure 17
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BOUNDING UNCERTAINTIES IN SIMULATION MODELS

Current synthesis approaches of simulation models involve a sequence of four phases
(Figurel8). '

First — selection of the models, which includes decisions about modeling approach,
level of abstraction, and computational requirements. The complexities arise due to:

= Multiconstituents, multiscale, and multiphysics material modeling,

= Integration of heterogeneous models,

Second — parameter identification. Data reduction techniques are used which
incorporate uncertainties,

Third — model updating, or reducing uncertainty by improving either the model
characteristics or the model itself, and

Fourth — Validation, in the sense of confirming that the model is an accurate
representation of the real system.

Figure 18
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QUALITY CONTROL AND UNCERTAINTY MANAGEMENT IN THE
MODELING AND SIMULATION OF COMPLEX SYSTEMS

The estimation of total uncertainty in the modeling and simulation of complex
systems involves: a) identification and characterization of the sources of uncertainty,
variability and error; b) uncertainty propagation and aggregation; and c) uncertainty
quantification (Figure 19).

Herein uncertainty is defined as a deficiency in any phase of the modeling process
due to lack of knowledge (model form or reducible uncertainty) increasing the knowledge
base can reduce the uncertainty. The term variability is used to describe inherent variation
associated with the system or its environment (irreducible or stochastic uncertainty)
variability is quantified by a probability or frequency distribution. An error is defined as a
recognizable deficiency that is not due to lack of knowledge. An error can be either
acknowledged (e.g., discretization or round-off error), or unacknowledged (e.g.,
programming error).

Figure 19
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VERIFICATION AND VALIDATION OF NUMERICAL SIMULATIONS

Quantifying the level of confidence, or reliability and accuracy of numerical
simulations has recently received increased levels of attention in research and engineering
applications. During the past few years, new technology development concepts and
terminology have arisen. Terminology such as virtual prototyping and virtual testing is now
being used to describe computer simulation for design, evaluation and testing of new
engineering systems.

The two major phases of modeling and simulation of an engineering system are
depicted in Figure 20. The first phase involves developing a conceptual and mathematical
model of the system. The second phase involves discretization of the mathematical model,
computer implementation, numerical solution and representation or visualization of the
solution. In each of these phases there are uncertainties, variabilities and errors.

Verification and validation are the primary methods for building and quantifying
confidence in numerical simulations. -Verification is the process of determining that a model
implementation accurately represents the conceptual/mathematical model and the solution to
the model. Correct answer is provided by highly accurate solutions. Validation is the
process of determining the degree to which a model is an accurate representation of the real
system. Correct answer is provided by experimental data.

‘Figure 20
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DESIGN OF EXPERIMENTS

These are systematic techniques for investigating (all possible) variations in system
performance due to changes in system variables.

Two categories of system variables can be identified, namely, a) Inner-array
variables, which are controllable; and, b) outer-array variables (also called noise
factors), which are functions of environmental conditions, and are uncontrollable.

Three categories of techniques can be identified: Regression analysis, statistical
methods and Taguchi’s method (Figure 21).

In Taguchi’s method, the controllable variables are selected in such a way as to
dampen the effect of the noise variables on the system performance. The method was
originally developed as an industrial total quality control approach. Subsequently, it has
found several other applications, including design optimization through variability reduction.
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Figure 21
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EDUCATION, TRAINING AND LEARNING

There has long been a philosophical gap between education and training. The goal of
education was to impart high-level cognitive skills that would underpin lifelong learning.
The goal of training was to bring performance up to a level that would let people successfully
achieve tasks. Recently, however, began to emphasize the skills involved in lifelong
learning, as evidence by continual-growth workshops and online training facilities on the
Internet. In a sense, both education and training objectives fit in the larger classification of
learning objectives (see figure 22).

Figure 22
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LEARNING OBJECTIVES, INSTRUCTIONAL MODELS AND TECHNOLOGIES

The desired outcome of learning can range from information transfer to skill and
knowledge acquisition to the more ambitious goal of development of critical thinking and
creativity skills. The instructional model and method used for accomplishing these goals
vary from instructor-centered, learner-center to learning-team centered. In the learner-
centered model, the learner is at the center of the learning process, and calls on many
information sources. Learning-team center models include virtual classrooms and web-based
distance learning models. The technologies employed in the three models are distribution,
interactive and collaborative technologies, respectively (See Figure 23).

Learning Objectives, Instructional Model, and Technology

Learning Objectives

Learning Collaboration

Team : Technologics
Centered
Eearner ~ *2 Interactive
Centered ] ¥ & Technologies
instructor . Distribution
Centered Technologies

Instructional Model Technology

Figure 23
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LEARNING NETWORKS

The convergence of computing, communication and information technologies is
providing opportunities for creating effective environments for life-long learning through
expanding the concept of a university which is, typically limited to a campus, to that of a
learning network (Figure 24). In such a network, the classrooms are augmented by e-
learning facilities (e.g., virtual classrooms); the libraries are expanded into intelligent
knowledge repositories (with digital libraries and intelligent search “and information
visualization capabilities); the physical test and experimental facilities are augmented with
access to more elaborate facilities at government labs, along with computer simulation of
these facilities; and Immersive telepresence technology is used to provide interaction with
geographically dispersed instructors and learners at other locations.

Figure 24
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ACTIVITIES OF LEARNING NETWORKS

The learning networks can significantly enhance the effectiveness of engineering
education, by changing the way three of the major functions of a university are carried out,
namely, development of content for courses, packaging courses into curricula and programs,
and delivery of these programs to learners (Figure 25). '

Each course is divided into self-contained learning modules, and a consortium is
established for generating the best content for each of the learning modules. Advanced
instructional technology; modeling, simulation and visualization facilities and authoring tools
are used in the development of modules.

The learning modules are then packaged into disciplinary and 1nterd1801phnary
courses and training programs to satisfy the needs of diverse groups.

The packaged modules are presented to individuals as well as groups of learners.
Collaboration and interaction is made available at many levels, both synchronous and
asynchronous.

Activities of Learning Networks Activities of Learning Networks
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Figure 25
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ADVANCED LEARNING ENVIRONMENTS

In order to meet the life long learning demands of the future and broaden the
awareness among the researchers and engineers of nondeterministic approaches, three
categories of learning environments are needed; namely, expert led group learning
environment; self paced individual learning environment; and collaborative learning
environment (Figure 26). The three environments, in combination, can reduce the time and
cost of learning, as well as sustain and increase worker competencies in high tech
organizations. :

The human instructors in these environments- will serve many roles, including
inspiring, motivating, observing, evaluating, and steering the learners, both individually and
in distributed teams.

Figure 26
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EXPERT LED LEARNING ENVIRONMENT

The human instructors in expert-led distributed learning in a virtual environment
serve as coaches, guides, facilitators, and course managers. Their presentations focus on a
broad overview of the topic and its diverse applications (Figure 27), and end with more
penetrating, what-if questions that can enhance the critical thinking and creativity of the
learners. Elaborate visualization and multimedia facilities are used in the presentations.
Routine instructional and training tasks are relegated to the self-paced individual learning
environment.

Figure 27
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SELF-PACED LEARNING ENVIRONMENT

The individual learning environment engages the learner and provides a high degree
of tailored interactivity. It can be used for self-paced instruction of routine material not
covered in the lecture. Using virtual instructors assigned by the human instructors can
enhance such instruction. It can be used to study the effect of various types of uncertainties
on the system performance using advanced visualization, multimedia and multisensory
immersive facilities. The individual learning environment can serve to carry out numerical
and virtual experiments - computer simulation of physical experiments (Figure 28).

Figure 28
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COLLABORATIVE / DISTRIBUTED LEARNING ENVIRONMENT

Collaborative learning environments teach teamwork and group problem solving.
Instructors and learners can be geographically dispersed. Eventually, they can be brought
together through immersive telepresence facilities to share their experiences in highly
heterogeneous environments involving different computing platforms, software and other
facilities, and they will be able to work together to design complex engineering systems
beyond what is traditionally done in academic settings. Because participants can be virtually
collocated without leaving their industry and government laboratories, collaborative learning
environments can enable the formation of learning networks linking universities, industry
and government labs. The ultimate goal of these learning facilities is to create an intellectual
environment where academic and experiential learning are effectively and efficiently co-
mingled. In such an environment, academic rigor is learned in concert with professional job
performance, and academic complexities are addressed within the industrial concern (Figure
29).
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VIRTUAL CLASSROOM

Online training and virtual classrooms are typically used to provide learning
environments with custom self-instruction, flexible tutorial support, and choice of both the
place and time of learning. Three categories of facilities are used in these environments;
namely: instruction, including multimedia lectures, links to other resources and tools for
searching, browsing, and using archived knowledge; communication, including email,
UseNet, chat centers, video and Internet conferencing; and course management and
performance evaluation (Figure 30). '

Figure 30
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NONDETERMINISTIC APPROACHES RESEARCH AND LEARNING
NETWORKS

The realization of the full potential of nondeterministic approaches in the design and
development of future complex systems requires, among other things, the establishment of
research and learning networks. The networks connect diverse, geographically dispersed
teams from NASA, other government labs, university consortia, industry, technology
providers, and professional societies (Figure 31). |

Figure 31
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EVOLUTION OF NEW TECHNOLOGY

The nondeterministic approaches and their associated technologies, as any other
technology, have gone through three phases The first is that of naive euphoria - unrealistic
expectations resulting from overreaction to immature technology. The second is cynicism, or
frustration associated with unmet expectations. The third is that of. realistic expectations —
gradually realizing the true benefits from the technologies (Figure 32).

Evolution of New Technology
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Expeactations 2

Figure 32
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OBJECTIVES AND FORMAT OF WORKSHOP

The objectives of the workshop are to: a) provide a broad overview of
nondeterministic approaches, uncertainty management methodologies, reliability assessment
and risk management techniques, and b) identify the potential of these technologies to future
aerospace systems (Figure 33). The workshop, including sixteen presentations and three
exhibits, illuminate some of the key issues in nondeterministic approaches and provide fresh
ideas for future research and development (Figure 34).

i

Objectives and Format of Workshop
Objectives

e Qverview of diverse activities in
Nondeterministic Approaches

o Identify potential for future
aerospace systems

Format

e 16 reSefntatEms, 7 sessions
e 3 Exhibits

Proceedings

e Printed (NASA CP)

e Electronic

Figure 33
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INFORMATION ON NONDETERMINISTIC APPROACHES

Extensive literature no exists on nondeterministic approaches, uncertainty

management methodologies, reliability assessment and risk management techniques. A short
list of reports, survey papers, monographs and books is given subsequently.
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INTRODUCTION AND OBJECTIVE

Future systems will require engineers to design them, test their performance, and
assess their robustness and vulnerability in a simulated environment. Simulation requires
validated building blocks for materials behavior, physical laws, environment-system
interaction, unit performance, and system performance. At every level and stage of the
simulation process, verification and validation are needed that should include ignorance
analysis, and uncertainty analysis and modeling. Example systems include our nuclear

weapon stockpile, space stations, satellites, space missions, etc.

Introduction

> Engineering Systems
— Complex engineering systems and reliance on
simulation, such as:
» Advanced systems (e.g., Mobile offshore base);
* Power plants; and aerospace & space mission
systems
require modeling and assessment of knowledge
and ignorance.

> Objective

— Adapt and develop quantitative models and
measures suitable for prediction and decision-
based design of complex engineering systems
under conditions of uncertainty or ignorance.

-

CTSI
B

Figure 1
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SYSTEM BREAKDOWN OF SHIPS

An example breakdown is provided for the functions of a ship. A work breakdown
structure is also provided for illustration purposes.

Ship
Serviceability Mission Survivability
f SI i S Requirements Requirements Requirements
e — Operationsl Cargo -{ Lifetines | Mability Comsmunication Maoility
Profile Handling
Systems.
Safaty Operational Profile Damage
Requirements Subiliy

Ship ¥ ¥ ¥
Hazard Mobility S1ability
Abatement

‘ Systems
Hazard Abatement Power Generation Navigation and Huit Systems Mission Fulfilment Ship Services
Systems and Distribution Communication Syst Systems
Systems Systems
1 Ship Handling
; 1 System Onutfitting
Fire Flooding ‘ v System
Protection Protection Main Electrical Navigation Extemal Work Crew
Systems Systems : Power and Controt Communicati ¢ Industrial Service Station Accommodation
System Systems on System Mission Mission System System
Power system Comrosion Systemns Systems
Life Saving ‘
Systems Intesnal System
o e

Structmmal
System. System £-—l
i ! ¥ vl C i Ballast
Life Jackets Genentor 1 Generator 2 Mission Systems

Strength Seakeeping Systems
Stracturat Structural
y System System
Emergency
Escape
Breathing Generator

e
Deck Butkheads

Frames

I
HI

Figure 2
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SYSTEM BREAKDOWN OF DAMS

An example breakdown is provided for the functions of a dam. A work breakdown
structure is also provided for illustration purposes.

System Breakdown .

Serviceability Safety
of Dams

Requirements Requirements

i —— Flood
A Control

Water Release

Pool

e | | -
am System Water L
— Level Gelontech_mcal
¥ v tegrity Flood D
Plain ownstream
Upstream and Dam Eacility Downstream and Dams
Water Inflow Water Outflow

v Dam Dam
Drainage Structure Foundation . Downstream
g | Lonste || rovbir | [Frmama] [P
e I v v
Upstream Seismic l Spillway I i Turbines [
Dams History and v v Environment
\ 4

Faults o
Flood Outlet Gates P i
{ . 'opulation
‘Warning
River, Soil Moisty Equig
i [

and other

Gl

‘Water Bodies Srow and Toe Reservoir ol
v 2 v
Farth Vegetation l]nitia]Level I Capacity [
Adjacent to Adjacent to
Water Bodies ‘Water Bodies
Ty 2
€3 Stides Debris

Figure 3
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LIFECYCLE OF NASA ENGINEERING SYSTEMS

The phases of the lifecycle of NASA systems are provided in this viewgraph covering
pre-phase and phase A. The details of these phases are listed.

Lifecycle of NASA Engineering
System

R s R AR

» Pre-phase A. Advanced Studies
» identify missions consistent with the NASA charter
> identify and involve users
> perform preliminary evaluations of possible missions

» Phase A. Conceptual Design Studies
» preparation of mission needs statements
» development of preliminary system requirements
> identification of alternative operations and logistics concepts
> identification of project constraints and system boundaries
> consideration of alternative design concepts
» demonstrating that credible, feasible designs exist

CTSI
T

Figure 4
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LIFECYCLE OF NASA ENGINEERING SYSTEMS

The phases of the lifecycle of NASA systems are provided in this viewgraph covering
phases B, C, D, E, and F. The details of these phases are listed.

Lifecycle of NASA Engineering
Systems

-

R, :

> Phase B. Concept Definition (selected items)
» reaffirmation of the mission needs statement
» preparation of a program initiation agreement
> preparation of a system engineering management plan
» preparation of a risk management plan

» Phase C. Design and Development

» Phase D. Fabrication, Integration, Test and
Certification

> Phase E. Pre-Operations
» Phase F. Operations and Disposal

Figure 5
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MODELING & SIMULATION OF ENGINEERING SYSTEMS

Modeling and simulation of engineering systems consists of several steps. These
steps are key to the processes of model qualification, verification and validation. The
processes of qualification, verification and validation are shown in the figure. The
verification process consists of three stages: conceptual model verification, design
verification, and code verification. The verification can be done by comparison and test of
agreement between the computational model and solution, and results from benchmark
(analytical or very accurate numerical solutions) of simplified model problems. The
validation consists of two stages: conceptual model validation, and results validation that can
be done by expert opinion solicitation. The objective herein is to adapt and develop
quantitative models and measures suitable for prediction and decision-based design of
complex engineering systems under conditions of uncertainty or ignorance.

Modeling & Simulation of
Engineering Systems

A

s " v

» Conceptual modeling of a real system

» Mathematical modeling of the conceptual designs
> Discretization and algorithm selection
»
>
>

Computer programming
Numerical solution
Representation of the wewe | compuer

Validation Simulation

Programming
COMPUTERIZED MODEL
Model

Verification

Model
Qualification

REALITY

Analysis

CONCEPTUAL MODEL

numerical solution

» Problem & System
Definition
CTSI

Figure 6
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KNOWLEDGE NEEDS FOR SOLVING PROBLEMS AT THE SYSTEM LEVEL

Problem definition and abstraction are key elements to problem solving and
knowledge construction.

Knowledge Needs for Solving
Problems z}t the System Level

> “The mere formulation of a problem
is often far more essential than its
solution ...” Albert Einstein

» “What we observe is not nature
itself, but nature exposed to our
method of questioning.”

Werner Karl Heisenberg

CTSH
p——ET—

Figure 7
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KNOWLEDGE CATEGORIES

A breakdown of knowledge categories, objects of knowledge and knowledge sources
are provided herein. The knowledge base about a system is a mixture of truth and fallacy.

Knowledge

.
Categories ,
Knowled - Obj f
L——-._ %\;:Sge h lt;iogf.ﬂ"ﬂ

Knowledge

Knowledge

Sources
v v .
%I:,c:,pﬁii Intuition Propositional | E\);gﬁl
—+| Prior I—-—f| Innate Ly Iglset

Induction

) The
Future

Values
*' Abstractions | Other Alleged

Sources
e Prophecy
Experiences Telepathy

Philosophy
of Language

Own Inner

The knowledge base about a Other

system is a mixture of truth Minds

e
CTSWN . and fallacy.

Figure 8
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KNOWLEDGE, INFORMATION, OPINIONS, AND
EVOLUTIONARY EPISTEMOLOGY

The definition of knowledge, information, opinions, and evolutionary epistemology

are provided.

Knowledge, Information, Opinions,
and Evolutionary Epistemology

TR T .o

Dialectical
process
Opinion 1
Information: / Knowledge:
Sensed obiccts. thi . A body of justified true
?:zes Org)i(;sss,es gﬁg’ Pead! Opinion 2 beliefs (JTB), such as, laws,
co;muni,cl;ted info;mation [*) models, objects, processes, 1+
and principles, acquired by
and knowledge by language humankind about a system
and multi-media. of interest
Evolution
Opinion r
Test and Use of
t Knowledge:
Evoltion——  Study, investigation, |
utilization, reflection on the
state of knowledge, ..., etc.

Evolution

Figure 9
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KNOWLEDGE DEFINITION AND CHARACTERISTICS

Knowledge is defined and its characteristics are provided. Knowledge is relative with
potential biasedness and time asymmetry.

Knowledge
Deﬁnition and Charactgristics

s L

» The body of truth, » Primarily a product
information, and of the past.

principles abouta . Engineers tend to
system of interest  pe preoccupied with

> Defined in the what will happen.
context of > Result: Potential
humankind. biasedness and
» Therefore, relative.  time asymmetry of
knowledge.
CTSI
CISl
Figure 10

48



CLASSIFICATION OF IGNORANCE

Ignorance can be classified into three groups with a subsequent level of blind
ignorance and conscious ignorance. The state of ignorance for a person or society can be
unintentional or deliberate due to an erroneous cognition state and not knowing relevant
information, or ignoring information and deliberate inattention to something for various
reasons such as limited resources or cultural opposition, respectively. The latter type is a
state of conscious ignorance which is not intentional, and once recognized evolutionary
species try to correct for that state for survival reasons with varying levels of success. The
former ignorance type belongs to the blind ignorance category. Therefore, ignoring means
that someone can either unconsciously or deliberately refuse to acknowledge or regard, or
leave out an account or consideration for relevant information (di Carlo 1998). These two
states should be treated in developing a hierarchal breakdown of ignorance.

[ i ®

Classification of Ignorance

Ignorance
Concept & Know- Object Propositional
How Ignorance Ignorance Ignorance
Blind Conscious Blind Conscious Blind Conscious

Ignorance Ignorance Ignorance Ignorance Ignorance Ignorance

Figure 11
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CLASSIFICATION OF IGNORANCE

Ignorance can be viewed to have a hierarchal classification based on its sources and
nature as shown in the figure. Ignorance can be classified into two types, blind ignorance
(also called meta-ignorance), and conscious ignorance (also called reflective ignorance).

Classification of Ignorance

Ignorance
| Conscious Ignorance | | Blind Ignorance |

¥ ¥ ¥ ¥ Y
lInconsistency| [Incompleteness | | Fallacy | [Unknownable| | Irrelevance |
I

¥ ¥ ¥ v
| Confusion ||| Inaccuracy | |Untopicality| | | Undecidability
[Conflict] | Uncertainty | | Absence | [f@

i

¥ v ¥
| Approximations | | Likelihood | |Ambiguity |
] !

¥ ¥ ¥ v
V/agueness| | Coarseness | [simplifications| | Nonspecificity | | Unspecificity |

v v
|Randomness| | Sampling |

CTSIY
S

Figure 12
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BLIND IGNORANCE

Blind ignorance includes not knowing relevant know-how, objects-related
information, and relevant propositions that can be justified. The unknowable knowledge can
be defined as knowledge that cannot be attained by humans based on current evolutionary
progressions, or cannot be attained at all due to human limitations, or can only be attained
through quantum leaps by humans. Blind ignorance also includes irrelevant knowledge that
can be of two types: (1) relevant knowledge that is dismissed as irrelevant or ignored, and (2)
irrelevant knowledge that is believed to be relevant through non-reliable or weak justification
or as a result of ignoratio elenchi. The irrelevance type can be due to untopicality, taboo, and
undecidability. Untopicality can be attributed to intuitions of experts that could not be
negotiated with others in terms of cognitive relevance. Taboo is due to socially reinforced
irrelevance. Issues that people must not know, deal with, inquire about, or investigate define
the domain of taboo. The undecidability type deals with issues that cannot be designated true
or false because they are considered insoluble, or solutions that are not verifiable, or as a
result of ignoratio elenchi. A third component of blind ignorance is fallacy that can be
defined as erroneous beliefs due to misleading notions.

Ighorance ]
* ! I}
ln [ Conscious Ignorance | [ Blind ignorance |
1

[inconsistency] [incompleteness] [Fallacy] [Unknownable] [irrelevance ]

' — L
I norance [ Confusion ] | [ inaccuracy | l l [Untopicality] | [ Undecidabifity

[Conilict] [ Uncertainty | [ Absence ]
T

S “%,M

IVagu;,nesﬂ [Coars'eness] |§np_lifizationsl [ Nonspecificity | {Unspecificity |
Blind Ignorance: Ignorance of (Rendomess] [Sanelng]
self-ignorance or called meta-ignorance.

> Fallacy: erroneous belief due to misleading notions

> Unknowable: Knowledge that cannot be attained by
humans based on current evolutionary progressions or
limitations, or can only be attained through quantum
leaps by humans .

> Irrelevance: Ighoring something.

> Untopicality: attributed to intuitions of experts that are
negotiated with others in terms of cognitive relevance.

> Taboo: due to socially reinforced irrelevance.

» Undecidability: deals with issues that are considered
insoluble or solutions that are not verifiable.

e

Figure 13
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CONSCIOUS IGNORANCE

It has two primary components of inconsistency and incompleteness as detailed in the

figure.

Ignorance

Conscious Ignorance e

y] [inc | [Fallacy } [Unknownable] {irrelevance |

and complete; and could not prove itself — . :
o , .. M&;‘?‘nmv ﬁé‘l‘i‘ﬁm

complete without proving itself

Kurt Godel (1906 1978) showed that a [ Confusion | | [ inaccuracy | J’ l [Ontopicality] | { Undecidability
logical agent could not be both consistent [Coniie] (Uresiaiy ] [Abecs]

¥ [3 k2
[Vagueness] [Coarseness | fsimpiifications]

[ Nonspecificity ] [Unspecificity |

inconsistent and vise versa.

A
Conscious Ignorance: A recognized self-

ignorance through reflection.

> Inconsistency
— Confusion (Wrongful substitutions)
— Conflict (Contradictory assignments or substitutions)
— Inaccuracy (Bias and distortion in degree)

> Incompleteness

— Unknowns (The difference between the becoming
knowledge state and current knowledge state)

— Absence (Incompleteness in kind)

— Uncertainty (inherent deficiencies with acqmred
knowledge)

CTSI * Ambiguity, Likelihood, Approximations

Figure 14
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THEORIES TO MODEL AND ANALYZE IGNORANCE TYPES

This table maps available theories to various ignorance categories. Ayyub (2001)
provides details on this classification and theories recommended for various categories.

Theories to Model and Analyze
Ignorance Types

i I T

Ignorance Type

Conflict

Simplification

Classical sets

Probability

Statistics

Bayesian

Fuzzy sets

Rough sets

‘Possibility

Monotone measure

Interval probabilities

Interval analysis

Figure 15
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SYSTEM DEFINITION LIMITATIONS

Two limitations are provided that correspond to organized and non-structured
complexity. Ayyub (2001) discusses and demonstrates these limitations.

Limitations 2

(Bremermann 1962):

“No data processing

[~ systems, whether artificial
or living, can process more
than 2x10% bits per second
per gram of its mass”

oy
®

16 Transcomputational Region

o

Size of Spatial Field (q)
N

1 2 3 4 5 6 7 8 9 10

Number of Colors (n)
Bremermann’s limit
10% bits
£
. 2
Pattern Recognition 3w
kn < 10% 58
For q x q spatial array defining g
9 . -
n = g2 cells with k colors Eg
% m
Human retina of about one z
million cells: 21,000,000 = (300
Average information Inputin Bits per Second
Figure 16
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SELECTED METHODS

These selected methods were described at the workshop with examples.

Selected Methods

_—

» Probability
v Classical theory

v Interval probabilities
v" Imprecise probabilities

» Bayesian methods

» Fuzzy sets, fuzzy arithmetic, constrained
fuzzy arithmetic, fuzzy probabilities

» Rough sets
» Possibility theory
» Fuzzy measure theory

» Dempster-Shafer theory of evidence

Figure 17
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MONOTONE MEASURES

Monotone measures provides a generalization of many methods listed in the previous
viewgraph.

Monotone Measures

A monotone measure for a non-empty family A of
subsets for a given universal set X, is a mapping as
follows:

frA—[0,]

For any pair A, and A, € Asuch thatA, N A, =,
super-additive (cooperative action or synergy between A,
and A,):

fA, VA > flA) +fA)
Additive (no interaction)

f(A] o Az) =f(A]) +f(A2)
Sub-additive (inhibitory effect or incompatibility)

A UA)<fA)+ A
CTSH ﬂ 1 2) f( ]) f( 2)
W

Figure 18
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CLASSIFYING MONOTONE MEASURES

The relationships between monotone measures and selected theories are listed herein.
Ayyub (2001) provides details on these relationships.

Classifying Monotone
Measures

R

i L s R

» Classical probability theory (crisp sets and
additive measures).

e Probability theory based on fuzzy events (fuzzy
sets and additive measures)

» Dempster-Shafer theory of evidence and its
monotone measures of belief and plausibility
(crisp sets and nonadditive measures).

* Fuzzified Dempster-Shafer theory of evidence
(fuzzy sets and nonadditive measures).

Figure 19
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CLASSIFYING MONOTONE MEASURES

The relationships between monotone measures and selected theories are listed herein.
Ayyub (2001) provides details on these relationships.

Classifying
Monotone Measures

e,

* Possibility theory and its monotone measures of
necessity and possibility (crisp sets and nonadditive
measures). This possibility theory case is a special
case of the above Dempster-Shafer theory of
evidence by requiring underlying events to be
nested, i.e., A, CA,C...CX.

* Possibility theory based on fuzzy events (fuzzy sets
and nonadditive measures).

 Other cases. A large number of cases can be
developed based on the nonadditive measures, such

as imprecise probabilities, and based on rough setsg
W

R

Figure 20
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UNCERTAINTY-BASED INFORMATION: UNCERTAINTY MEASURES

Uncertainty measures can be used to solve engineering problems, such as regression
based on minimizing uncertainty, combining expert opinions based on maximizing
uncertainty, and information consolidation based on the uncertainty invariance principle.

| Ucertaaty Theory | Uncertainty Messure Equation | Uncertainty Type | Year
Classical set theory U(A) = log, 14} | 1) | Nonspecificity 1928
. . he) - '
JFuzzy set theory - U(A) = ﬁ f log; |°Alde (9.22) | Nonmspecificity 1983
0 . . )
r_l— i | Possibility theory U= Z':r,- log, ‘—_'_—1 9.26) | Nonspecificity 1983
im2 : .
| evidence theory | Nemy =Y m(4)log, 1A (936) | Nouspecificity 1985
' Ae¥
. Probability theory Hm) =~} m((xDlogym((x}) o3 | suie 1948
Uncertainty- 1L - ‘
based Bvidence theoty S(m) =~ Y. m(A)log, Y m(B) IAIQIB I (9.54) | Swife. . 1992
AT Be¥ .
Information | X o
| Possivility theory C80) = Y~ rinlogy — (958 | stife ' 1992
Y K . pnc A
* : : 2
- N J=1
Uncertainty : : g :
. =¥ e ——e : N S 1992
Measures Evidence theory NS(m) E,ym(A) oty < A 059 | Totak: Nem) +5m) | 1992
. Be¥
. ) I : .2
Possibility theory NS(r) = E(r, ~rin1}logy —:—- | (9.60) | Total: N (r) + 8@r) 1992
A im3 Erj ‘ A
Fuzzy st theory fW=Tl-pAW-1] | 030 |Fuzies | 19m
‘Ex . ) .
Fuzzified evidence theory’ Fmy=Y m(A) F(A) ©61) | Feminess 1988
. Ae¥F .

Figure 21
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation can be used to deal with uncertainty and risk
in cases were data and experiences are absent.

Expert Opinion Elicitation

-

» System Complexity
» Delphi method
v technological forecasting
v policy analysis
» Scenario analysis
> The basic Delphi method by Helmer (1968)

» Nuclear Regulatory Commission Method
(1999)

Figure 22
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation is described in steps.

Expert Opinion Elicitation

» Delphi method
v technological forecasting
v’ policy analysis
» Scenario analysis
» The basic Delphi method consists of the following
steps (Helmer 1968):

v' Selection of issues or questions and development of
guestionnaires.

v' Selection of experts who are most knowledgeable about
issues or questions of concern.

v Issue familiarization of experts by providing sufficient details
on the issues on the questionnaires.

CT8I
W

Figure 23
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation is described in steps.

Expert Opinion

> The basic Deiphi method (Cont.):

v Elicitation of experts about the issues. The experts generally do
not know who the other respondents are.

v Aggregation and presentation of results in the form of median
values and an inter-quartile range (i.e., 25% and 75% percentile
values).

v'Review of results by the experts and revision of initial answers by
experts. Respondents who provide answers outside the inter-
quartile range need to provide written justifications or arguments
on the second cycle of completing the questionnaires.

v'Revision of results and re-review for another cycle. The process
should be repeated until a complete consensus is achieved.
Typically, the Delphi method requires two or three cycles or
iterations.

v' A summary of the results is prepared with argument summary for
out of inter-quartile range values.

CTSE

Figure 24
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation is described in a flowchart.

Identify Need of an

EXpert Opinion Expert Elicitation

Process

® ® ] l
Elicitation o Sy ot

b PO LS S —

Define Study Level

communicate results

¢ Tl Process: TIF Process ¥
Select Technical Select Technical Integrator &
Integrator (TT) Facilitator (TTF)
Identify and sefect peer Identify and select Tdentify and select
. o experts and peer
reviewers technical issues Ny
reviewers
Identify technical issues, available information, design Discuss and refine the
analyses, information sources, and retrieval methods issues
Perform analyses, collect information relevant to Train the experts for
issues, and estimate needed quantities elicitation
Perform data Administer peer Facilitate group interaction, and
diagnostic review elicit opinions
Revise estimated quantities, and respond to peer Analysis, agg] isions, lution of di:
reviews and ion of needed g
Document process and Administer peer

review

Document process and
communicate results

Figure 25
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EXPERT OPINION ELICITATION

The outcomes of expert opinion elicitation is described including consensus and no
consensus.

Expert Opinion Elicitation:
Outcomes

™ Expert Elicitation
Process
]
v v
No Consensus Consensus
]
v v 3
Equal Weights Non-equal Type 3: Experts agree
Weights that a particular
I probability distribution
v v Type 1: Each expert represents their views as
Quantitative Weichi believes in same a group.
Weights eighing deterministic value or
model. Type 4: Experts agree that a
particular probability
Type 2: Each expert distribution represents the
believes in same overall scientific community.
probability distribution
for a variable or model
R, parameter.
CTSl
Figure 26
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SUMMARY AND CONCLUDING REMARKS

A Hierarchy for ignorance is provided in this paper, and analytical methods are
identified for modeling various types. Novel analytical methods and algorithms to accurately
assess and model information content by classifying, analyzing and modeling ignorance
types for the purpose of constructing knowledge are outlined in the paper. As our reliance on
computational methods in simulation-based approaches for discovery and design, the need
for formal methods to analyze and model ignorance and uncertainty is expected to increase.
These methods can be used within a framework of decision analysis to meet the needs of
decision and policy makers.

Summary and
Concludmg Remarks

o W< S TR

» Characteristics of future systems:
v Complexity
v" Uncertainty
v" Societal expectation
v New risks
v Risk acceptance

» Simulation and decision-based design requires
guantitative methods for verification and
validation.

» The need to develop qualitative methods that
are suitable for engineering systems to deal
with uncertainty and ignorance in order to
manage risk.

Figure 27
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Distinction between uncertainty and error
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¢ Summary and conclusions
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BACKGROUND AND PURPOSE

Our focus is on developing a framework for identifying and estimating error and
uncertainty in nondeterministic computational simulation. This framework is composed of
six phases, which represent a synthesis of the activities recognized in the systems engineering
(operations research) community, the probabilistic risk assessment community, and the
numerical methods community. Our framework emphasizes models that are given by a set of
partial differential equations (PDEs) that must be solved numerically, although the
framework is also applicable to modeling in general. We stress a clear distinction between
the specification of the system, which is modeled by a set of PDEs, and the environment,
which should be representative of the boundary conditions and excitation for the PDEs. We
make a distinction between error and uncertainty so that the issues of representation and
propagation of each is aided. The issue of numerical solution error is generally ignored in
risk assessment analyses and nondeterministic simulations. Neglecting numerical solution
error can be particularly detrimental to uncertainty estimation when the mathematical models
of interest are cast in terms of nonlinear PDEs. Types of numerical error that are of concern
in the numerical solution of PDEs are spatial discretization error in finite element and finite
difference methods, temporal discretization error in time-dependent simulations, and error
due to discrete representation of strongly nonlinear interactions.

S
Background and Purpose o

T ENGMEeIINgG BCIonCes Conter

Develop a general framework for estimating uncertainty and error
in nondeterministic computational simulations
* Scope of framework:
¢ Continuum mechanics and energy transport

+ Mathematical models are given by a system of ordinary or
partial differential equations

 Differential equations are solved by discretization methods
(finite element, finite difference, finite volume methods)

¢ Approach represents a synthesis of methods from:
+ Systems Engineering (nuclear reactor risk assessment)
¢ Statistics (probabilistic structural mechanics)
* Numerical solution of PDEs (finite element methods)

THeio0 liclatic i mine/UQ/ODU.NASA workshop.5-01
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STEPS IN QUANTIFYING UNCERTAINTY AND ERROR IN
NONDETERMINISTIC SIMULATIONS

One could identify four steps in quantifying uncertainty and error in nondeterministic
simulations. First, one constructs a mathematical model of the system of interest. This
model must define where the physical system ends and the environment, or surroundings,
begin. Second, one must specify where and how all of the modeled uncertainties and errors
appear in the formulation of the nondeterministic simulation. Third, given these uncertainties
and errors, one assumes a mathematical representation that will be used to describe these
uncertainties and errors. For example, uncertainties are traditionally represented by
probability distributions. Fourth, one must propagate and aggregate these mathematical
representations of uncertainty and error through the nondeterministic computational process.

Steps in Quantifying Uncertainty and Error Sendin
in Nondeterministic Simulations @ st

1) Construct a mathematical model of the system of interest

2) identify all relevant sources of uncertainty and error

3) Create appropriate mathematical representation for each
individual source of uncertainty and error

4) Propagate and aggregate all representations of sources through
the nondeterministic simulation process

e lida mine/UG/ODU.NASA.workshop.5-01

Figure 3
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PHASES IN NONDETERMINISTIC SIMULATIONS

This presentation proposes a comprehensive new framework, or structure, of the
general phases of modeling and simulation. The phases are, 1) conceptual modeling of the
physical system, 2) mathematical modeling of the conceptual model, 3) discretization and
algorithm selection for the mathematical model, 4) computer programming of the discrete
model, 5) numerical solution of the computer program model, and 6) representation of the
numerical solution. Characteristics and activities of each of the phases are applicable to a
variety of disciplines, e.g., computational fluid dynamics, structural dynamics, and heat
transfer. We also distinguish between aleatory uncertainty, epistemic uncertainty, and error
that might occur in any of the phases of modeling and simulation.

Sanda
Phases in Nondeterministic Simulations el
Ma‘ihemaﬁcé‘[ Modeliti .
of the Conceptual M

Figure 4
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TYPES OF UNCERTAINTY

We use the term aleatory uncertainty to describe the inherent variation associated
with the physical system or the environment under consideration. Sources of aleatory
uncertainty can commonly be singled out from other contributors to nondeterministic
simulation by their representation as distributed quantities that can take on values in an
established or known range, but for which the exact value will vary by chance from unit to
unit or from time to time. Aleatory uncertainty is also referred to in the literature as
stochastic uncertainty, variability, inherent uncertainty, and irreducible uncertainty. We
define epistemic uncertainty as a potential deficiency in any phase or activity of the modeling
process that is due to lack of knowledge. The first feature that our definition stresses is
"potential,” meaning that the deficiency may or may not exist. In other words, there may be
no deficiency, say in the prediction of some event, even though there is a lack of knowledge
if we happen to model the phenomena correctly. The second key feature of epistemic
uncertainty is that its fundamental cause is incomplete information. Incomplete information
can be caused by vagueness, non-specificity, or dissonance. Epistemic uncertainty is also
referred to as reducible uncertainty and ignorance.

S
Types of Uncertainty Lones

Aleatory uncertainty is the inherent variation associated with the
physical system or the environment.

¢ Also referred to as irreducible uncertainty, variability, and
stochastic uncertainty.

+« Examples:
* Variation in thermodynamic properties due to manufacturing
e Variation in joint stiffness and damping in structures
e Variation in external excitation of a system

Epistemic uncertainty is a potential deficiency in any phase of the
modeling process that is due to lack of knowledge.

¢ Also referred to reducible uncertainty, model form uncertainty,
and subjective uncertainty.

s Examples:
* Poor understanding of fracture dynamics
¢ Poor knowledge of failure, misuse, or hostile scenarios
» Information from expert-opinion elicitation

7116/01 liclati ions, mine/UQ/ODU.NASA.workshop.5-01
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ERROR IN COMPUTATIONAL SIMULATIONS

We define error as a recognizable deficiency in any phase or activity of modeling and
simulation that is not due to lack of knowledge. Our definition stresses the feature that the
deficiency is identifiable or knowable upon examination; that is, the deficiency is not caused
by lack of knowledge. Essentially there is an agreed-upon approach or ideal condition that is
considered to be more accurate. If divergence from the correct or more accurate approach is
pointed out, the divergence is either corrected or allowed to remain. It may be allowed to
remain because of practical constraints, such as the error is acceptable given the
requirements, or the cost to correct it is excessive. This implies a segregation of error types:
an error can be either acknowledged or unacknowledged. Acknowledged errors are those
deficiencies that are recognized by the analysts. When acknowledged errors are introduced
by the analyst into the modeling or simulation process, the analyst typically has some idea of
the magnitude or impact of such errors. Examples of acknowledged errors are finite
precision arithmetic in a computer, approximations made to simplify the modeling of a
physical process, and conversion of PDEs into discrete equations. Unacknowledged errors
are those deficiencies that are not recognized by the analyst, but they are recognizable.
Examples of unacknowledged errors are blunders or mistakes; that is, the analyst intended to
do one thing in the modeling and simulation but, for example, as a result of human error, did
another. There are no straightforward methods for estimating, bounding, or ordering the
contribution of unacknowledged errors.

Sanda
Error in Computation Simulations ' @ Laboires
O ENGIOCTING SeIoneas Center

Error is recognizable deficiency in any phase of the modeling and
simulation process that is not due to lack of knowledge.

* Acknowledged errors are errors that can be estimated, bounded, or
ordered

+ Finite precision arithmetic in a digital computer

» Lack of spatial grid convergence

¢ Conversion from continuum PDEs to discrete mathematics
¢ Unacknowledged errors are blunders or mistakes:

¢ Programming errors

¢ Input and output errors

e Compilation and linkage errors

et i ions. mine/UQ/ODU.NASA workshop.5-01
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EXAMPLE PROBLEM: MISSILE FLIGHT ANALYSIS

In this example we consider an analysis of the flight of a rocket-boosted, aircraft-
launched missile. We make the following assumptions concerning the missile:

1. The missile is unguided during its entire flight, i.e., only ballistic flight is
considered.
2. The missile is propelled by a solid fuel rocket motor for the initial portion of

its flight, and it is unpowered during the remainder of the flight.

3. The missile is fired from a launch rail attached to the aircraft in flight.
4. The only aerodynamic surfaces on the missile are fins to provide flight
stability.

The analysis considers the missile flight to be in the unspecified future, i.e., the
analysis is an attempt to predict future plausible events, not analyze an event in the past. The
analysis requires the estimated uncertainty in all of the plausible events.

Example Problem: Sondi
Missile Flight Analysis s

¢ Problem description:
* Rocket-boosted, aircraft-launched missile
¢ Unguided during entire flight
¢ Propelled by a solid fuel rocket motor
¢ Fired from a launch rail on the aircraft
¢ Typical purposes of nondeterministic analyses:
« 1) Missile performance (normal environments)
¢ 2) Flight safety (abnormal environments)

+ 3) Missile reliability (hostile environments)

7601 jiclexti i mine/UQ/ODU.NASA workshop.5-01
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PHASES OF NONDETERMINISTIC SIMULATIONS

We have identified four major activities that are conducted in the conceptual
modeling phase: system/environment specification, scenario abstraction, coupled physics
specification, and nondeterministic specification. The system/environment-specification
activity consists primarily of carefully identifying the physical or conceptual elements that
are considered part of the system and those that are considered part of the environment. The
scenario-abstraction activity attempts to identify all possible physical events, or sequences of
events, that may affect the goals of the analysis. The coupled physics specification identifies
and carefully distinguishes the possible alternatives for physical and chemical processes in
the system, and the coupling between these processes for the system/environment
specification and scenario abstraction under consideration. In the nondeterministic
specification activity, decisions are made concerning what aspects of the system and
environment will be considered deterministic or nondeterministic.

We have identified four major activities in the mathematical modeling phase:
formulation of the PDEs, selection of all auxiliary equations that supplement the differential
equations, formulation of all initial and boundary conditions required to solve the PDEs, and
selection of the mathematical representation of nondeterministic elements of the analysis.
The PDEs commonly represent conservation equations for mass, momentum, and energy, but
they can originate from any mathematical model of the system. The auxiliary equations are
equations that are required to complete the PDEs. The boundary and initial conditions
provide the required closure equations needed for all PDEs. Formulation of the
nondeterministic representations is based on the needs of the analysis, as well as the quantity
and quality of relevant information available.

Sanda
Phases of Nondeterministic Simulations @ e e
T e T e

Conceptual Modeling Mathematical Modeling
Activities Activities
System/Environment Specification Partial Differential Equations
(Uncertainties) (Uncertainties and Acknowledged Errors)
Scenario Abstraction Auxiliary Physical Equations
(Uncertainties) . (Variabilities and Uncertainties)
7| Coupled Physics Specifications o Boundary and Initial Conditions
{(Acknowledged Errors) (Variabilities and Uncertainties)
Nondeterministic Specifications Nondeterministic Representations
(Variabilities and Uncertainties) (Uncertainties and Acknowledged Errors)
me/on i ine/UCYODU.NASA.
8
Figure 8
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CONCEPTUAL MODELING ACTIVITIES

Three possible system/environment specifications for the missile flight example are
shown. The specifications are listed from the most inclusive (with regard to the system
specification) to the least inclusive. System/Environment Specification 1 considers the
missile and the atmosphere near the missile to be part of the system, whereas the launching
aircraft and target are considered part of the environment.  System/Environment
Specification 2 considers the missile and the aerothermal processes occurring on the missile
to be part of the system, whereas the atmosphere near the missile, the launching aircraft, and
the target are considered part of the environment. System/Environment Specification 3
considers the missile to be the system, whereas the aero thermal processes, atmosphere near
the missile, launching aircraft, and target are considered part of the environment. Even
though this is the simplest specification considered, it still allows for significant complexities
in the analysis. Note that in the diagram the only specification, or tree element, delineated is
System/Environment Specification 3.

Sandia
Conceptual Modeling Activities @ Netiol s
e LGIMOSIING SCIenCes Conter
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ACTIVITIES IN THE REMAINING PHASES OF NONDETERMINISTIC
SIMULATIONS

The discretization and algorithm selection phase accomplishes two related activities.
First, it converts the continuum mathematics model, i.e., the differential equations, into a
discrete mathematics problem suitable for numerical solution. Second, it provides the
methodology determining how a discrete set of computer solutions can be most appropriately
used to accommodate the nondeterministic features of the analysis. Three activities are
identified in the computer-programming phase: input preparation, module design and coding,
and compilation and linkage. Input preparation refers to the analyst's conversion of the
mathematical and discrete model elements into equivalent data elements usable by the
application code. The second and third activities relate to the building of the application
code itself. Four activities are identified in the numerical solution phase: spatial and
temporal convergence, iterative convergence, nondeterministic propagation convergence, and
computer round-off accumulation. In the solution representation phase we have identified
five activities: input preparation, module design and coding, compilation and linkage, data
representation, and data interpretation. The first three activities are very similar to those
discussed in the computer-programming phase. The data representation activity includes two
types of similar activities: 1) the representation of individual solutions over the independent
variables of the PDEs and 2) a summary representation that combines elements of the
multiple individual deterministic computer runs. The data interpretation activity refers to the
human perceptions or impressions that are formed based on observation of the represented
solutions.

Activities in the Remaining Sandia
Phases of Nondeterministic Simulations @ Bomities

Discretization and
Algorithm Selection
Computer Programming Activities

Activities Discretization of PDEs
Input Preparation (Acknowledged Errors)
(Unacknowledged Brrors) Discretization of BCs and ICs
Madule Design and Coding - (Acknowledged Errors)
-  aad
Unacknowledged Forors) Selection of Propagation Methods
Complfation and Linkage (Acknowiedged Errors)
(Unacknowledged Errors) Design of Computer Experiments
{Acknowledged Erors)
Solution Representation
Numerical Solution Activities
Activities Input Preparation
Spatial and Temporal Convergence Wnacknowledged Errors)
{Acknowledged Errors) Module Design and Coding
Iterative Convergence (Unacknowledged Brrors)
(Acknowledged Erross) o o tion and Linkag
P »| (Unacknowledged Errors)
(Acknowledged Errors) Data
Computer Round-off Accumulation (Acknawledged Bnors)
{Acknowledged Errors) Data interpretation

{Unacknowledged Errors)
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TREE-STRUCTURE FOR MODELS, SOLUTIONS, AND REPRESENTATIONS

The figure illustrates the multiple models, numerical solutions, and solution
representations that are addressed in the missile flight example. As shown in the figure, six
conceptual models are identified, many more are implied, but for illustration only one is
selected for further development and analysis. This single conceptual model spawns two
alternative mathematical descriptions, the 3-DOF and 6-DOF models, both of which are
carried through the remaining phases of the modeling and simulation process. For simplicity,
only one of these mathematical models shows further development, although it is understood
that identical development of Mathematical Model 1 is taking place in parallel with
Mathematical Model 2. The discretization and programming phases identify alternative
model choices that are not considered further in this example. Continuing into the numerical
solution phase, nondeterministic effects that were identified in the conceptual model and
further defined in the mathematical modeling phase are computed via multiple deterministic
numerical solutions. How these solutions were computed was specified in the propagation
method identified in the discretization and algorithm selection phase. Finally, in the solution
representation phase, the multiple solutions are merged to represent the complete
nondeterministic solution.

Tree-Structure for Models, Solutions, Sanda
and Representations Leroies

"""" == Ehgineering Sciences Cenier T S

71601 i ions. mine/UQ/ODU.NASA §-01

Figure 11
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SUMMARY AND CONCLUSIONS

We have presented a comprehensive, new framework for modeling and simulation
that blends the perspective of three technical communities: the systems view from the
operations research community, propagation of uncertainty from the risk assessment
community, and the numerical solution of PDEs from the computational physics community.
The activities that are conducted in each of the six phases of modeling and simulation were
discussed. We carefully define and distinguish between uncertainty and error. Our
framework applies regardless of whether the discretization procedure for solving the PDEs is
based on finite elements, finite volumes, or finite differences. The formal distinction
between aleatory uncertainty and epistemic uncertainty in this framework drives one toward
different mathematical representations for each type of uncertainty.  Probabilistic
representations are clearly appropriate for aleatory uncertainty, and various other modern
information theories are, we believe, more appropriate for epistemic uncertainty. We
recommend research into evidence (Dempster/Shafer) theory. This theory, however, is not
well developed when compared to traditional probabilistic methods. If one were to take the
step and represent aleatory uncertainty probabilistically and epistemic uncertainty with
evidence theory, then one must face the question of propagating these components
concurrently through the modeling and simulation process. Propagation of Belief and
Plausibility measures from evidence theory through complex PDE models is a research topic.

Sanda
Summary and Conclusions it
S ETIOIIoIINg DeIonCes Conter

¢ Presented an overview of the phases of nondeterministic
simulation and the activities that occur in each phase

* Nondeterministic analyses should be focused, e.g., performance,
reliability, or risk assessment.

¢ We have distinguished between sources of aleatory uncertainty,
epistemic uncertainty, and error

+ Mathematical representations of uncertainty:
¢ Aleatory uncertainty: traditional probability theory
¢ Epistemic uncertainty: Dempster-Shafer theory
¢ Areas of research in Dempster-Shafer theory:
¢ Construction of input Belief and Plausibility measures

¢ Combination of evidence is non-unique
* Propagation of Beliefand Plausibility measures through the model

716/01 i mine/UQ/ODU.NASA workshop.5-01
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Motivation

= Confidence in probabilistic assessments Is required fo
support :
» Certification
» Design analysis
= Critical decisions
= First step towards verification and validation of probabilistic
models

» Understanding where errors originate will suggest more
robust computational strategies

Southweist Researdyingtite

Figure 3 |

Sources of Error
in Probabilistic Analysis

= Model approximation
# First or second-order approximation

« Calculation of derivatives
s Uncertainty characterization
¢ Insufficient data o = All forms of error are reducible
» Selaction of incorrect distribution = V&V of the probabilistic analysis
» Probability integration = Incregsed data collection
s insufficient numberof samples = Development of more accurate and
» First of second-crder approximation robust analysis methods

a Numerical algorithm
# Transformations to standard normal
» Convergence error in finding the MPP
@ Algorithm error pwrong or multiple MPP)

B Southwes! Resespatiinstitute

Figure 4
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Algorithm Error is Most Troublesome

= Source of error is inability of the

algorithm to locate the correct MPP [~
# locab-minimum’
» raultiple minimums

« violations of the assumptions of a smooth

i
and continuous response surface:
= For robustness, algorithm must be oo 901 space
able fo locate all MPP's

= Troublesome aspect is that problem
can arise after transtformation to

standard normal, unbeknownsito
the user

= Can oceur when mapping from
original to standard normal space

Southwest Resgamiripstiiute

Figure 5

Probabilistic Analysis Methods

= Fast Probability Integration Methods fring
= Advanced mean valug
= First'and second:order reliability msthods
« Fast convolution integration using FFT

= Sampling Methods
= Monte-carlo simulation
= Sphere-based imporiance sampling
# Latin:hypercube simulation
# Adaptive importance sampling

‘ py Wost Brobable
= Probabilistic fauit-tree 5 Pait MPE}

= Response surface method

L) Southwest Researsh nstitiute

Figure 6
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How to Find the
Most Probable Point (MPP)

= Formulation
Minimsize: D= it Maximum joint pdfy
Subjectiog(x)=gliy=0
» Standard optimization methods
» Modifled Method of Fesible Directions
{(MFDY
# Sequential Linear Programming (SLP}

+ Sequential Quadratic Programming
(S0P

Sy

e

= Tailored methods N
v AR oW
» Hasofer-Lind S =
« Rackwitz-Fiessler g
= Others T
i
1
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Convergence Criteria
"Modified RF" Optimization

= Checking only f'may not be
sufficient
* g has miltiple mpp's.
& may stabilize (converge}, butthe
MPF may not
= Checkangle between
sucesassive MPP during
iteration
8 =cos upn,]
= Also check g=0. Summary: B
;ﬁ" u‘iﬁ’fﬁ«l - [Ql;"‘g‘ b4 {OH a y
& =[0,,—6]18, <102 > B

& =le(X)< 0B - \ %ua
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Figure 9

Example Problems

= Thres examples solved
#*From SAE G11 Probabilistic Methods, Numerical Review Subcommities

= (Goal is to investigate accuracy and error (not efficiency)

» Solutions obtained using
»Monte Carlo (MCS)
» Firsizorder Reliability Method (FORM)
= Second-order Reliability Method {(SORM)
» Advanced Mean Value {AMV+)
w®Adaptive iImportance Sampling (AIS)
# Response Surface Method (RSWM)

= NESSUS 3.0 software used for all problems
= Modified Rackwitz-Fiessler{RF). attempted first
» If problems; switched to sequential quadratic programming (SQP)

o Southwest Researsh instite .

Figure 10
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Example Problems - The Details

= Monte Carlo
=100M samples
»95% confidence boundsg

= AN+

% 5% iteration tolerance.

s AlS
«Second order (curvature based)
# 5% error and 95% confidence
& RSM
« Central Composite (CC) design.used
« TOM samples
» 172 reported for each problem
» 2¢ move limits. on each random variable

5,
R

;%gg« Houthess! Researafr sttt

n
Figure 11
Example 1 - Gear Contact Stress Model
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Example 1 - Gear Contact Stress Model

® | inear transformation {(normal
to standard normal)

= Response surfacesamein
x-space and u-space

e, g
E M, 2 £

a G
e S\\/ S L
AV

vttt Researsfyingtiutd @

Figure 13

Example 1 - Gear Contact Stress Model

s All methods
compare . ,
reasonably well Nimoes /
. . . oo LIRS
= RSM in errorin s 7
left tail 2 e, 7
& Due to fitaround: !
central region . s /
wButwhatisthe e
error? ” / e
A .
B e ded 0o 20000 40d oD ou0
%ﬁ?@ Southwest Resegrof institide i
Figure 14
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Example 1 - Gear Contact Stress Model

wPercenterrorfron: ww

Monte Carlo 1 et

solution (160M LS o —

samples) - \ e

S v BEGT D

s G5% confidence , \;\

bounds £ '
= All methods posses. a5

someerror 3

e X-space and y-space %4

furiction approXimation

s convergence tolerance it . . -
£ 4 w3 2 Bi 4 ¥ 2 X 4 &

Even for mildly nonlinear problems, accurate function:
approximations in x and u-space-are important

Figure 15

Example 2 - Maximum Radial Stress of a
Rotating Disk

= Response function
e ) 3@_) o
0 ) (s )((931’;(39.37)}(”60 (5 =77)
» Random Variables
Var Name: Mean 8D Dist
9 p°§5:t§)“5 030 | 0005 Normal
p gt‘;’/’;‘ﬁgg‘ 0284 | 0002 | Normal
Rofor ;
: Uniform
® S(r‘;?ﬁ;’ 10500 | 288.7 | 116000,11000)
- Outer
1o Radius (in) 8 0.02 Normat
. laner
ri Radius (i) 2 .01 | Normal
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Figure 16
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Examp!e 2 - Maximum Radial Stress of a
Rotating Disk

» Nonlinear mapping from X= space
x-space to u-space due to L
extremely non-normal joint pdf ;

u-space

R

R
2

%};@ Sisz;fhw;s! Regparhinstiae i

Figure 17

Example 2 - Maximum Radial Stress of a
Rotating Disk

= Plot shows g=0 contours : @
for all 9 levels

= Madified RF converged
on only 4 MPP's

w Switched to SQP and
found all MPP's

= Note that firstorder fit to
response reasonably
good near origin, -and
worse in tails

% Scusthwest Reésearshingtitule 5

Figure 18
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Example 2 - Maximum Radial Stress of a
Rotating Disk

= At this scale, all =

s FOHBE

methods appearto |, |+sow P d

have done well wevvN
PR i e 4
& Some error in tail :
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Figure 19

Example 2 - Maximum Radial Stress of a
Rotating Disk

= Right tail shown *

(meBhcuita Cart .
i FEVHRL V4

= (ood solutions LR - ;
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= Systematic errorin = se4—— 7
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solutions 80 /
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Example 2 - Maximum Radial Stress of a
Rotating Disk

» Plot shows magnitude |

of error can be quite

oniins TR

large even for o ok o
converged solutions %‘a B
» FORM & AMV+ 0% N

w# SORM and AlS s

Q\«\H\ [ S5 ConfRbman

= 1Y%
perform very well,

Re
even though u-space

is highly nonlinear A

s

= RSM performs well

P
5

Y

because fit in x-space

4 P P A G 4 3 i 4 5§

is good, : "
» Large left tail error-in RSM
is'sampling error
@% Southwest Resesmof rafilute ”
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Example 2 - Maximum Radial Stress of a
Rotating Disk

Lessons Learned

= First-order approximation in u-space may not be accurate for

highly nonlinear function
«Nonlinear in x-space
# Nonnormal transformation

= AMV+ converges on location of MPP. Computed probability
then depends on what order of approximation is used.

= AMV+ used hereis based on first-order. Second order
available, but not used very often.

w Recommendationistou

se AMV¥ to locate MPP, Then use

AlS to compute probability.

B,
Yo Southwes! Researoh institite

Figure 22
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Example 3 - Multiple MPP Problem

& Response function
Z=3+2X} X!~ X,

= X, ~NI0,1]

= X~NI[D,1]

= Response surface same in
u-space and x-space

= Slight nonlinearity in X,

Southimst Reseaiohrinstiite

X3

Figure 23

Example 3 - Multiple MPP Problem

= =0 levels numbered in
contour plot

= Again, the modified RF
algorithm reported
CONVErgence errors.

» Switched to SQP and found 24428
ong MPP per limit state

= Function is symmetric about
X2 -therefore, two MPP's
exist.

= Splutions reported on
following charts are based on
one {shown) MPP

Sauthwest Rusgarmty institite

24

Figure 24
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Example 3 - Multiple MPP Problem

= Very steep cdf in

left tail ’
= Unable to discern - e
difference in R ng g
solutions 2 .m ' A .
¥ AR N
= Systematic errorin ‘[ Y Sk hptront

right tail observed *° %

wRSM obvicusly bad

» Full quadraticis poor

approximation to

original function 4
# Using wider miove limits. &

improved tall, but at 50 356 50 S0
expense of central *
regicn

Soulrwest Reseainh nsliute

756

1150

Figure 25

Example 3 -

Multiple MPP Problem

= | eft tail response
shown \

w Error Qbseryeci at 0 /‘,»w
levels 1-6 by all =
methods ) A

= Error due to use of
only oneMPP =

Rt OIS 8231

=RSMerrordueto = oo Y S
poor function Do)
approximation * sy —

5.9 o e o 1% 24 - A0
:b o Southwes! Researctyinsiitide "

Figure 26
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Example 3 - Multiple MPP Problem

f X el HORRY

s Percent error plot o
significant error . P

S
ot ST
. s B (120 D00

N I e Sistenr Sppinant |
M \ SR !15% consime. |
25

= Need a more general , ** 1
approach thatcan ¢
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pr 2
automnatically 3,\ Ty
» switch optimizers if trouble % ;
encountered " \
» identify multiple MPP's 0o
# solve multiple:MPP o ‘ .
problem % 4 £ kS 1 [ 1 2 3 4 5
L
Sttt Resesioh bnliute w5
Figure 27
Proposed Strategy: System Approach
= Case 5, Level 4 studied in o
more detail I
. i. : |
» Monte Carlo sampling on 38 /
transformed response function |
{u-space) | 16
¥ ¥
| £
= 2M samples used, but still fast | 24 /
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= | Jse NESSUS probabilistic

Proposed Strategy: System Approach

fault free to solve multiple
MPP problem
= Adaptive Importance

Sampling used to compute
union of two limit states

and system probability

3‘3

“1‘ 36
= Sampling based MPP search 2
calculation applied {o each “
level

= Excellent resulls obtained

F&ymm 1
[ SOET—
o

3

) b
@f@ gi%;

T

o Southwest Researchrinstiute

Figure 29

Summary

= All forms of erfor-are reducible

# V&V of the probabilistic analysis
wincreased data collection

+ Development of more accurate and robustanalysis methods
» Assessed via deterministic or probabilistic analysis

= Types of errors in probabilistic analysis
# Model approximation

= Uncertainty characterization

& Probability:integration

« Numetical algorithm

= Various errors quantified in paper using simple analytical
models

= Simple but effective strategy used to solve multiple MPP
problem

F Saubwest Researst institite

3

Figure 30
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Conclusions

= For challenging problems, trained analysts are required to
compute accurate solutions

= Advanced mean value (AMV+) method and the modified RF
optimizer were the only methods that identified when
problems were oceurring

» Sclutions to difficult problems (multiple MPP) can be solved
using existing methods, but detailed knowledge of the
problem is required

= Robustness of computer code not only measured by its
ability to gef a solution, but to get the right solution
» S‘cluﬁonfenor must' be-quantified before confidence is-gained
« Methods must-warn when:problems are suspected
» Adaptivefintelligent methods can produce accurate solutions

B0 Southwsst Research Instiite

#

Figure 31
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Existing predictive technologies

Probabilistic technology
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Typical Inputs

Typical outputs

Examples

Latest development in probabilistic software tools

Outline

Existing predictive technologies

Probabilistic technology
Practical software architecture
Typical Inputs

Typical outputs

Example

Latest developments in probabilistic software tools

Unipass Technologies

Figure 1
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Traditionally, predictive analyses have used either a deterministic or a statistical
approach. The deterministic approach attempts to predict the outcome of a process or event
using physics-based mathematical models of the event by assigning single values to the
variables that enter these models and affect the outcome. Furthermore, the deterministic
approach also assign a safety factor to the outcome in order to account for the overlooked

EXISTING PREDICTIVE TECHNOLOGIES

variability and uncertainties.

In contrast, the statistical approach relies on pure statistical data of process or event
out come that can often be flawed or difficult to obtain. Both of these approaches work in

isolation, failing to consider any other factors that may significantly affect the result.

Existing Predictive Technologies Have Many Shortcomings

m  Deterministic approaches

Develop a deterministic event model using physics, process, rules, etc

Assign a single value to each deterministic event model variable and calculate a
single value for the outcome

Calculate a single adjusted value of the outcome by applying a safety factor to the
calculated outcome to compensate for uncertainties

Predict future of the event using the single adjusted value of the outcome
Confirm and/or calibrate the single adjusted value by tests and/or field data

m  Statistical approaches

Collect sufficient statistical data for the similar event outcome

Calculate mean, variance, and distribution of the the event outcome using
collected data

Predict future of the event using the mean, variance, and distribution of the the
event outcome

Unipass Technologies

Figure 2
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PROBABILISTIC TECHNOLOGY

The probabilistic analysis begins by developing the deterministic models of the
process and identifying the uncertainties associated with such process. There are two type of
uncertainties that should be identified, namely, Type I Uncertainties and Type II
Uncertainties. The Type I Uncertainty representing the inherent uncertainties associated with
the deterministic model variables (e.g., variability of the load in a stress model that calculates
the stress under the effect of such load) while the Type II Uncertainties are the uncertainties
that are not covered under the Type I Uncertainties (e.g., uncertainties associated with lack of
statistical data, model imperfection, human error, measurement error, etc.). If necessary, new
variables should be defined to represent Type I and II Uncertainties. Upon completion of the
deterministic models and identification of the uncertainties, the Probabilistic Process Models
(PPM) should be built. These models describe the outcome of an event using the
deterministic models and the Uncertainty Type I and II variables. The Variable Probability
Distribution Models (VPDM) is built using the available test/field data and/or the analyst
judgment. The PPM and VPDM are then used to perform probabilistic analysis utilizing a
probabilistic software engine (e.g., UNIPASS™).

Probabilistic Technology Eliminates
The Shortcomings of The Existing Technologies

m Probabilistic approaches
» Develop a deterministic process models using physics, process, rules, etc

* Identify uncertainties associated with the deterministic-process-models variables
( Type I Uncertainties)

< Identify uncertainties that are not associated with the deterministic- model variables
( Type II Uncertainties)

* Define new variables representing Type I Uncertainties if necessary
(Type I Uncertainty Variables)

* Define additional variables representing Type II uncertainties
(Type II Uncertainty Variables)

« Develop a probabilistic-process-model by incorporating all Type I and II Uncertainty
Variables into deterministic event model

» Develop variable statistical models for all variables including deterministic model
variables, Type I Uncertainty Variables, and Type II uncertainty Variables using test/field
data and/or analyst judgment :

« Perform probabilistic analysis using probabilistic event model and statistical variable
models

« Predict future of the event using the obtained results
¢ Calibrate/update models using tests and/or field data

Unipass Technologies

Figure 3
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PROBABILISTIC TECHNOLOGY

The probabilistic approach incorporates the best of deterministic and statistical
methods. This is achieved by using the deterministic process models and enhancing them by
taking into account the uncertainties associated with the process and variables (e.g., inherent
uncertainties, modeling and measurement errors, lack of data, etc.) and identifying the
individual factors that are key to predicting a likely outcome. This approach optimizes the
analysis, zeroing in on the factors that actually drive the process.

As oppose to statistical approach the probabilistic technology utilizes the information
regarding the variables that enter the process models and affect the outcome and does not
require process statistical data for the analysis, however, such data may be used to fine tone
the predictive models. Furthermore, the technology quantifies the safety measures and
prediction accuracy by providing probabilities associated with the process outcomes.

Probabilistic Technology
Is Superior to The Existing Predictive Technologies

Utilizes physics/behavioral/rule/process based predictive model

Considers inherent uncertainties, modeling uncertainties, lack x x .
of data, human error, measurement error alole = %%3»

} Compensates for unknowns using:

4 Utilizes past performance data to improve accuracy

1 Does not require event’s past performance data to develop
predictive model

Quantifies safety measures

Quantifies prediction accuracy

Bme Bnes Moo

W [sesarervracTors  [sM]sTatisTICAL ME

Unipass Technologies

Figure 4
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PRACTICAL SOFTWARE ARCHITECTURE

A practical software architect works through the combination of one or more
databases containing the information about the process variables and/or outcome; a Filter
software that cleans up the databases using a series of rules identified by the analyst; a
software engine that reads the data from the databases and identifies the best Variable
Probability Distribution Models (VPDM) for the process variables (e.g., our ProFit™
software); a software engine that can create the Probabilistic Process Model (PPM) using the
deterministic models, from the deterministic software systems, and the information residing
in the databases (e.g., our ProModeler™ software); and probabilistic engine (e.g., our
UNIPASS™ software engine) that perform the probabilistic analysis. The PPM is a
mathematical representation of how an event works which may be behavior, process, physics
and/or rule based. The VPDM is the probability distribution of the PPM’s variables.

Practical Software Architecture
Utilizes Many Many Software Tools and Databases

Update Variable Models

Variable
Models

> RESULTS

UNIPASS

Process

Models

y

Unfiltered Database
Filtered Database

ProModeler

Update Process Models

Unipass Technologies

Figure 5
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TYPICAL INPUTS

The probabilistic analysis requires four essential items including (a) the Probabilistic
Process Models (PPM) that describe the outcome of an event and are constructed using the
deterministic models (e.g., a finite element model or a crack growth model) and the
mathematical models that describe the uncertainties and are not considered in the
deterministic models (e.g., lack of statistical data, modeling error, human error, measurement
error, etc.); (b) the PPM’s Deterministic Variables; (c) the probability distribution models
that describe the randomness of the Uncertainty Type I Variables (e.g., Type I Uncertainties);
and (d) the probability distribution models that represent the randomness of the Uncertainty
Type II Variables (e.g., Type I Uncertainties).

Typical Inputs Provides for
Integration of Process and Uncertainties |

Unipass Technologies

Figure 6
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY
DISTRIBUTION MODELS

Large Amount of Data Available: One of the following techniques may be use to
construct the Variable Probability Distribution Models (VPDM) when large amount of data is
available (more than 50 data point).

Approach 1: Assume a distribution type and calculate the distribution parameters
using the method of moments. Perform the goodness-of-fit tests to eliminate the
unacceptable distributions. Use probability paper approach to select the best distribution in
the desired range.

Approach 1: Assume a distribution type and calculate the distribution parameters
using the maximum likelihood method. Perform the goodness-of-fit tests to eliminate the
unacceptable distributions. Use probability paper approach to select the best distribution in
the desired range.

Typical Inputs Include Variable Models

m Large amount of data available

 Distribution type: identify distribution type using probability paper
and/or goodness-of-fit-tests. Must have large amount of data
(usually 50-100 points) to discriminate between distribution types.
Common tests are K-S test and anderson-darling test (preferred).
Identify distribution type using probability paper and/or goodness-
of-fit-tests

» Distribution’s parameters: calculate distribution’s parameters using
method of moments or maximum likelihood estimator for the
selected distribution type

Unipass Technologies

Figure 7
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY
DISTRIBUTION MODELS

Small Amount of Data Available: Assume a distribution type and calculate the
distribution  parameters using the maximum likelihood method. Utilize
hyperparameterization (assume parameters of the random variables to be random variable
themselves) to account for lack of sufficient data.  Use probability paper and/or the
goodness-of-fit test approach to identify all acceptable distribution types within the desired
range. Select the distribution that provides for the most conservatism.

Typical Inputs Include Variable Models

m  Small amount of data available

» Distribution’s parameters: Calculate distribution’s parameters using
maximum likelihood estimator for the selected distribution type and use
hyperparameterization to consider uncertainty due to lack of statistical
data

» Distribution Type: Select a distribution that is conservatively consistent
with the available data

Stress Strength
r\ Y

AT

Y

“a” and “b” are more conservative than “a” and “c”

Unipass Technologies

Figure 8
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY
DISTRIBUTION MODELS

Very Limited Amount of Data Available: Assume Beta or Uniform distribution type.
Use hyperparameterization for poorly quantified physical bounds.

No Data Available But Engineering Analysis Exists: Construct a user-defined
distribution as shown in the example below.

ypical Inputs Include Variable Models

m  Very limited amount of data available
* Use Uniform or Beta (good quantification of physical bound)
* Use Uniform or Beta with Hyperparameterization (poor quantification of
physical bound)
m  No data available but engineering analysis exists
* User defined distribution
* Example
» Worst stress value from FE analysis 120 ksi
» Maximum spread between best and worst condition is 20 ksi
» Actual stress could be off by 10%
» Stress = C (120-S)

Where C is uniform between 0.9 and 1.1 and S is uniform between 0
and 20

Unipass Technologies

Figure 9
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY
DISTRIBUTION MODELS

No Data or Engineering Analysis Exists: Construct a user-defined distribution as
shown in the example below.

ypical Inputs Include Variable Models

m  No data or engineering analysis available only engineering
judgment can be made

» User defied distribution
» Example: consider a turbine blade thickness
» Nominal value=0.058
» Allowable tolerance = +0.005 which occurs 90% of the time

» Maximum deviation outside acceptable tolerance= +0.002 (10%
of the time)

90%

5% 5%

0.051 0.053 0.063 0.065

Unipass Technologies

Figure 10
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TYPICAL INPUTS - DEFINING PROBABILISTIC PROCESS MODELS

In general, an event model is a mathematical expression relating a dependent variable
¥, to a set of observable variables x, and a set of unobservable model parameters z. The model
is usually constructed on the basis of simplifying principals, and sometimes on purely
heuristic basis when underlying phenomenon is not well understood. In addition to inherent
uncertainties, there are at least three major phenomena that give rise to uncertainty in an
event model. These include model imperfection, measurement error, and statistical
uncertainty. The process of model construction mounts to estimating the unobservable model
parameters z based on a set of measurements x;, and y;, i=1,.....m of the observable model
variables. Following the Bayesian paradigm, we express our lack of precise knowledge about
z by assigning a probability distribution to it. The Bayesian Updating Rule allows us to
combine previous information about z with information obtained from observed data to arrive
at a distribution.

Typical Inputs Include Process Models

m  Known relationship (explicit or implicit)

» In many instances, the exact theoretical relationship for the predictive
model will be well known from a theoretical relationship such as from
an engineering handbook or a deterministic code

m  Know data to estimate predictive model

+ In some instances, it may be possible to construct an approximation to
the predictive model by using regression models of empirical data or
similar statistical methods

Unipass Technologies

Figure 11
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TYPICAL OUTPUTS

In general, probabilistic analysis produces three categories of information that would
help achieving an informed decision. This includes probability information, most likely
conditions, and sensitivity data. These categories are briefly descried in the following charts.

Typical Outputs Provide for Predicting
the Future, Understanding the Present, and Explaining the Past

Unipass Technologies

Figure 12
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TYPICAL OUTPUTS

Probability Information: The probability information includes reliably, failure
probability, cumulative distribution function (CDF),and probability density function (PDF).
The probability information may be used to identify the most critical failure mode; estimate
the reliability, potential risk, and liability. It may also be used to determine the acceptable
response range or calibrate the safety factors.

Most Likely Conditions: The most likely conditions is identified by the most-
probable-point (MPP). In general, the MPP represents the most likely values of the random
variables at which the critical or significant condition of the user-defined event will occur. In
engineering, a critical condition may be an undesirable event such as component failure or
instability, or a desirable event such as extended component life or mission success.

| Typical Outputs Includes Probability Information,
Most Likely Conditions, and Sensitivity Data

m Probability information (e.g., failure probability, reliability, probability values,
CDF, or PDF) can be used to:
* Estimate reliability, failure probability, risk, and liability
 Calibrate safety factor and identify critical failure mode
* Minimize number of tests, inspection costs
» Estimate response range
* Etc

m Most-likely conditions (e.g., most-probable-point) can be used to :
» Identify most-likely combination of predictive model variables in the field

* Certification process tests, reliability demonstration tests, most likely test setups,
safety control systems

¢ FEtc

Unipass Technologies

Figure 13
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TYPICAL OUTPUTS

In performing probabilistic analysis, it is often of interest to determine the sensitivity
of event outcome or its calculated probabilities with respect to model variables and their
parameters appearing in the event model. These measures are useful for many purposes
including but not limited to identification of key event drivers, important sources of
uncertainty, optimal condition, resource allocation, and analysis of model uncertainties.
Often, these measures also provide insight into the physics of the event.

Tyical Outputs Includes Probability Information,
Most Likely Conditions, and Sensitivity Data

= Sensitivity information includes physical and probability sensitivities
and can be used to:
* |dentify key variables
¢ |dentify worst load combination
* Automate processes
* Minimize number of tests
* Minimize weight
¢ Minimize response variation
* Minimize number of tight tolerances

* Minimizes costs (e.G., Development, manufacturing, inspection,
maintenance, and/or warranty costs)

s Efc

Unipass Technologies

Figure 14
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EXAMPLE

The reliability of the Design 2 should be equal or higher than the reliability of Design
1. Investigate the possibility of using the less expensive material (Material 2) using
deterministic approach. Check the accuracy of the results using probabilistic analysis.

Example

m Select a material for design 2 that ensures equal or higher reliability
than design 1 under the new loading condition

+ Design 1: Load = P,, Material = Material 1
P, = p,
+ Design 2: Loads = P, - P,, Material = ?

Unipass Technologies

Figure 15
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EXAMPLE

Assuming a safety factor of 1.4 the deterministic analysis predicts a Safety Margin of
0.0 for Design 1 and a Safety Margin of 0.131 for Design 2 using the Material 2.

Analysis Results: Material 2 can be used for Design 2.

Example

m Deterministic analysis strategy
» Assume a safety factor of 1.4 for both designs
« ldentify the margin of safety for both designs
 |dentify the safer design

m Deterministic analysis results
» Design 1: margin of safety = 140/(1.4*100) -1 =0
e Design 2: margin of safety = 95/(60*1.4) - 1 = 0.131
o Safer design: design 2 (0.131 > 0)

» Sensitivity analysis results not available

Unipass Technologies

Figure 16
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EXAMPLE

Assuming Material 2 for Design 2, probabilistic analysis predicts much higher failure
probability for design 2 compared with Design 1. This violates the design requirement.

Analysis Results: Material 2 cannot be used for Design 2.

Example

m Probabilistic analysis strategy

* Consider the variation of design parameters (P, and P, )

* Defines limit-state function, g =f,, i, - calculated stress (P, A),

I.E., Failure occurs when calculated stress > fy )

= Probabilistic analysis results:

* Design 1: reliability = R, = 0.99997

* Design 2: reliability = R, = 0.99942
Safer design: design 1 (R,>R,)

Sensitivity analysis results available

Unipass Technologies

Figure 17

117



EXAMPLE

Design 2 is subjected to two random loads with 10% coefficient of variation. This
will result in a standard deviation of 10.77 kips for the resultant load spectrum of Design 2.
To ensure the same level of reliability for both designs, the number of standard deviation
away from mean of the applied load must be identical for both designs. This assumption will
result in a safety factor of 1.718 for Design 2. Using the new safety factor, the deterministic
approach will also achieve the same results obtained by the probabilistic method.

Example

m  Calculate number of standard deviations away from mean (SD, ) for design 1
based on assumed safety factor (SF, = 1.4)

SD, = (SF,*100-100)/10 ]\
= (1.4%100-100)/10 = 4 A

.
Cad

40

m  Use the same number of standard deviations (SD, = SD,), calibrate safety
factor for design 2 (SF,)

SF, = (60+ SD,*10.77)/60 1077
= (60+4*10.77)/60 = 1.718 \ s

= Calculate the required strength for design 2 based on the updated safety factor,
SF, (original required strength = 60*1.4 = 84 ksi)

Required Strength =84 * 1.718/1.4 = 103.08 (> 95, not acceptable)

e

Same Safety Factors May Not Be Appropriate for All Designs

Unipass Technologies

Figure 18
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EXAMPLE

Assuming the same level of reliability, safety factor is a highly nonlinear function of
load and strength uncertainties. This means that the safety factors must be calibrated for

structures that are subjected to multiple loads to ensure adequate reliability level.

Example

m Probabilistic technology
can identify the critical
areas that safety
factors must be
increased to meet

=
required reliability and s/
safety =
b.
g xe 0]
m Probabilistic technology ‘é?a_

can reduce structural
weight by identifying |
and reducing safety
factors where possible 1]

Safety Factor = Design Load/Mean Load
V_ = Load Uncertainty

V¢ = Strength Uncertainty

Reliability = .9999

T L o o >

Unipass Technologies

Streng’?ﬁ Uncertain(’&, Vq

Figure 19
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LATEST DEVELOPMENT IN PROBABILISTIC SOFTWARE TOOLS

The following list includes the most recent available probabilistic software tools

UNIPASS, ProFit, and ProModeler by Unipass Technologies
NESSUS by NASA Glenn and SwRI

ProFEA by ARA

ANSYS PSD by ANSYS

PROBAN by Veritas

FEBREL by Boeing

Latest Development in Probabilistic Software Tools

Will Allow Companies To Maximize Their Business Success

UNIPASS, ProFit, and ProModeler by Unipass Technologies
NESSUS by NASA Glenn and SwRI

ProFEA by ARA

ANSYS PSD by ANSYS

PROBAN by Veritas

FEBREL by Boeing

Etc

Unipass Technologies

Figure 20
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LATEST DEVELOPMENT IN PROBABILISTIC SOFTWARE TOOLS

The general-purpose UNIfied Probabilistic Assessment Software System,
UNIPASS™, can be utilized independently, as a stand-alone software engine, and/or
integrated with deterministic software tools to perform complex probabilistic analyses. In the
analysis, UNIPASS™ provides the basis for modeling uncertainties, developing probabilistic
process models, computing probabilities, identifying most likely outcomes, providing
sensitivity data, identifying key drivers, analyzing risk, and performing sensitivity analysis,
while the deterministic software tools may be integrated to provide the computational
framework for constructing complex deterministic models.

To ensure predictive accuracy, UNIPASS™ provides multiple algorithms, which the
user can select. By comparing the results of several algorithms, a level of confidence in the
predictions can be achieved. Furthermore, UNIPASS™, in addition to 11 gradient-based MPP
identification methods, also provides a robust simulation-based search algorithm that
identifies MPPs for discontinuous and/or non-differentiable limit-sate functions.

UNIPASS Probabilistic Engine Provides Unmatched
Capabilities for Performing Complex Probabilistic Analysis

m  User friendly graphical user interface
UNIX and Windows 95, 98, 2000, and NT operating systems

23 distribution types for modeling 4 classes of random variables including user-
defined distribution

m 59 mathematical functions for modeling any complex event
* Event model may be function of any variable or any previously defined function

m 3 analysis types including probability analysis, inverse probability analysis, and
CDF/PDF analysis

m 4 different problem types including component, serial system, parallel system, and
general system

®  Numerous probabilistic methods in 6 categories for performing probabilistic analysis
including FORM, SORM, SM, ISM, RSM, MVBM

®  Generic and Customized Interfaces for easy integration with in-house and
commercial codes

m Interface with MSC/NASTRAN finite element code

Unipass Technologies

Figure 21
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LATEST DEVELOPMENT IN PROBABILISTIC SOFTWARE TOOLS

The probabilistic analysis begins by constructing process models and the probability
distribution models. In addition to physic-based models, analysts often seek to construct
models of processes, such as manufacturing processes, for which only some statistical data is
available, and to construct These process models and probability distribution models can be
constructed using our proprietary software tools ProModeler™ and ProFi™, respectively,
utilizing available data. Using a general Bayesian framework, ProModeler™ constructs the
process models utilizing available data. This tool provides a framework for the analysis of
uncertainties and model assessment by a Bayesian Updating Rule. Utilizing available data,
ProFit™ identifies the best probability distribution model using a combination of the
maximum likelihood method, three goodness-of-fit tests, and probability paper approach.
The method of maximum likelihood involves taking as the estimate for each unknown
parameter the value that appears most probable on the basis of the given data. The goodness-
of-fit tests are objective techniques that provide a probabilistic framework in which it
evaluates the adequacy of the distribution function. Probability paper approach is more a
subjective method that determines whether or not the data contradict the assumed model
based on a visual examination. This concept can provide a great deal of useful information in
addition to an evaluation of the appropriateness of the chosen model.

ProFit and ProModeler Software
Provide Capabilities for Variable and Process Modeling

m ProFit engine identifies the best distribution type for a given data set
 Identifies best distribution for a given data set comparing 22 distribution types
* Performs 3 different goodness-of-fit tests
* Provides probability paper

» Estimates distribution parameters using method of moments and maximum
likelihood method

m  ProModeler Provide several techniques for building the process model and
identifying patterns from given data using

* Last-square method, regression approach, and Bayesian updating

Unipass Technologies

Figure 22
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PROBABILISTIC SYSTEM DESIGN

Probabilistic system design holds many opportunities to improve the total design
process from concept to detailed design to service performance. Probabilistic design provides
a rational basis for the linking of all of the interactive elements of system performance in a
direct manner that accounts for the variability or uncertainties in all of the variables.
However, there are major issues and challenges that yet must be overcome. The goal today is
to provide an overview of the current state of probabilistic design while pointing the
achievable work yet to be done.

Probabilistic System Design:
Issues and Challenges

T. A. Cruse
Private Consultant
Pagosa Springs, CO

Figure 1
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THREE MAIN MESSAGES

The reality today is the probabilistic methods are already finding their way into the
design process in various industries. The revolution in the design process is already
underway. The presentation will also address the message that probabilistic methods are not
yet ready to deploy to the design floor to support the certification of advanced, man-rated
systems. Finally, the presentation will address ideas on the integration of probabilistic
methods with some non-traditional methods (at least to those doing design).

Main messages

# Probabilistic methods are being used today to
design systems for industry

# Probabilistic methods require further
development to certify system designs

@ Future design system developments require
integration of probabilistics and non-
traditional analysis methods

May 30, 2001 T. A. Cruse, Consuitant

Figure 2
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PRESENTATION OUTLINE

Probabilistic methods are not just research. They have already been deployed to
industry to support product design as well as process engineering, with great savings in cost.
The joint AF/Navy JSF program has committed to probabilistic high cycle fatigue design
requirements as the required technology to assure product performance and reliability. The
presentation also includes reference to a study done by this consultant for the NASA Glenn

Research Center as part of the now-defunct NASA ISE program.

However, the basic tools and methods used in probabilistic design still require
significant improvements in order to adequately support the design process for advanced
aerospace systems. The key issues and challenges that remain included robustness and error
bounds for all algorithms, the ability to predict confidence (or assurance) bounds on the

predicted system outcome, and model verification and validation methods.

Presentation outline...

# Where we are today
= Some industrial successes
= Air Force probabilistic-HCF program
=« Non-deterministic, non-traditional methods
(NDNTM) for design study (NASA/GRC)
# Issues and Challenges
= Robustness and error bounds for models
s Confidence/Assurance bounds for data/models
= Verification and Validation procedures

4 Conclusions and recommendations

May 30, 2001 T. A. Cruse, Consuitant
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PREDICTIVE RELIABILITY ENGINEERING

Working with the Los Alamos National Laboratory, Delphi Automotive has deployed
the PREDICT system that uses a probabilistic network approach to support the performance-
based, reliability growth design process from concept to field deployment. Probabilistic
modeling of the manufacturing processes at Procter and Gamble, also using LANL
developed technologies, identifies processing improvements that achieve bottom-line
benefits. That effort has been so successful that P&G is now marketing the technology to
others. References are given to some of these keys, recent applications of technologies
developed at Los Alamos National Laboratory. The technologies were developed to support
the nation’s weapons reliability requirements: where analysis must substitute for full-scale
testing.

Anon., “Proctor & Gamble starts peddling a “top secret” manufacturing technology,”
Manufacturing News, Vol. 8, No. 6, pp. 1, 6-8, Friday, March 30, 2001.

Kerscher, W. J., Booker, J. M., Bement, T. R., and Meyer, M. A., “Characterizing
reliability in a product/process design assurance program,” Los Alamos National Lab Report
LA-UR-97-4072, Proceedings of the International Symposium on Product Quality &
Integrity, Jan. 19-22, 1998, Anaheim, CA.

Predictive reliability engineering

# Los Alamos National Lab has focused on
deploying reliability based design tools to
industry

= Proctor & Gamble project simulates reliability of
manufacturing process to within 1% [Mfg News,
March 30, 2001]

= Delphi Automotive uses PREDICT methodology for
total mechanical system design [LA-UR-97-4072]

@ Critical contributions focus on the integration
of disparate types of data and information

May 30, 2001 T. A, Cruse, Consuiltant
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LANL PREDICT METHODOLOGY OVERVIEW

The PREDICT system has as its operating core the prediction of system performance
(e.g., reliability) from conceptual design through field deployment. While the application to
Delphi Automotive focused on reliability growth during the design and deployment process,
aerospace design typically starts with a “successful” design on paper that meets the reliability
goal but at a level of excessive weight, or other performance shortfall. The point is that
predictions are made and tracked throughout the design process. Further, the range of
uncertainty on the performance metric is identified and tracked along with its principal
drivers. The goal is to increase reliability while decreasing the uncertainty range on that
reliability. The PREDICT system tracks the metrics along with the drivers so that
development and test investments are made where they can have the greatest impact on
improved design.

As a normal part of the design process, the reliability may be adversely changed as
the result of new information or data. That new information is fed into the Bayesian network
to provide rigorous updates to the system performance. The critical technology to me in the
LANL effort is the ability to integrate disparate forms of design and experimental
information from expert opinion to test data.

LANL PREDICT methodology

A change
could result
in decreased

reliability.

uncertainty with
changes/tests.

Reliability

Reliability

Prototype Production Customer Use

Concept Design
Biatigtioat Belsncey Group Los Alsmes MNationa! Laboratory
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- AF PROBABILISTIC HCF PROGRAM

The JSF turbine engine designs use integrally bladed rotors whose lightweight and
flexibility means that dynamic modes are fully coupled across and around the rotor. Such
dynamic coupling can result in “tuned absorber” dynamic response such that all energy feeds
into a small region resulting in rapid structural failure. Deterministic design methods have
been found to be incapable of controlling this phenomena and the commitment has been
made by industry to step up to a full probabilistic design that links to manufacturing
variability.

HCF design has been a major AF field failure problem for over two decades. Rotor
LCF has largely been controlled through the damage tolerance design approach but HCF
technology has lagged. The controlling design requirements for all engine structures is
defined by the Engine Structural Integrity Program (ENSIP) guidelines contained in Mil-Std-
1783A. That standard is now being updated to include probabilistics. The zero™ level change
that has been accepted by industry is a probabilistic resonant frequency avoidance criteria.

The AF has joined with NASA to continue what had started as a NASA ISE program
to infuse some of the LANL PREDICT technology into the AF HCF program. In particular,
the effort is demonstrating how to elicit design and operating information from industry on
the sources of and nature of the variability in the aeromechanics drivers and structural

response for bladed rotor HCF failures.

AF is Committéd to b‘\rOBabilistic
basis for HCF life prediction

# Requirement driven by integrally bladed
rotors that cannot meet reliability
requirements otherwise

# HCF identified as the major structural
reliability problem in the field

# Preliminary, zerot level probabilistic design
requirements are being adopted

@ Joint NASA/AF/Industry effort to apply
portions of the LANL/PREDICT system to HCF
problem

May 30, 2001 T. A. Cruse, Consultant
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NASA/GRC ISE-FUNDED STUDY OF NDNTM FOR SYSTEMS DESIGN

This funded study was performed in CY 2000 and a final report is available through
the Program Manager, Dr. C. C. Chamis. The context for the study undertaken by this
consultant is the AF HCF program, the Consultant’s experience and work in probabilistic
design, a comprehensive literature review, and a personal belief that NDNTMs are required
for the next generation space access vehicle system design. The study included a review of
NASA’s design technology base, current design environment studies in industry, and
technology capabilities and efforts at a number of key small business or university sites.

The conclusion of the study is that we have no real current need for new probabilistic
methods but that we have many important tasks to complete in order to deploy non-
deterministic design into aerospace vehicle design practice. Another key conclusion reached
by this consultant is that the nation lacks the critical leadership necessary to achieve a truly
inter-operable, information based design environment such as envisioned by the NASA ISE
effort. At this time it appears that every major aerospace firm is working on its own vision
for such systems and these are not likely to work together.

NASA/GRC study on Non-deterministic,
Non-traditional Methods

NASA's Design Technology Base

Intelligent Synthesis Environment
NPSS Design Environment

Current Design Environment Development

Current Technology

. The Boeing Company
USAF Probabilistics HCF Program Rockwall Science Center

Probabilistic Structural Analysis Methods :
; " The Honeywell Corporation
Personal Design Expertise Pratt & Whitney

NONTM Litareturo Review GE Aircraft and Corporate R&D

. ]
Technalogy Tool & Environment Development

Engineous Software, Inc.
Applied Research Associates, Inc.
Southwest Research Insfitute
STl Technologies, Inc.
Impact Technologies, Inc.
Unipass Software, [n¢,
Wright State University
Los Alamos Nafional Laboratory
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NDNTM STUDY PUBLISHED KEY RECOMMENDATIONS

The conclusion of my NDNTM study for NASA was that the future space access
systems designs must integrate design information in innovative ways that include the
variability and uncertainty issues upon which probabilistic design methods focus. The design
environment is fundamentally driven by the need to integrate disparate forms of information
from data to judgment. The design environment also requires the ability to work with many
interoperable tools that might be generated by diverse sources and integrated at the desktop.
- The study proposed an integrated non-deterministic design environment.

_Principal recommendations

¢ Future, 3" Gen system design will
integrate variability and uncertainty

s Design depends on integrating disparate
forms of information and analysis

= Approach requires a standard software
engineering environment with
interoperable tools, not packaged software
@ Integrated non-deterministic design
environment was recommended

May 30, 2001 T. A, Cruse, Consultant
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INTEGRATED NDNTM DESIGN ENVIRONMENT CONCEPT

The focus in this graphic is on non-deterministic design using non-traditional
methods. The chart shows in blue ovals the technology areas for which details are proposed
- in the NDNTM Final Report. Elements include intelligent interfaces, Bayesian networks,
fuzzy logic for data/information fusion, and other non-traditional technologies. However, the
central processing element of the NDNTM is mathematically rigorous probabilistic methods.
Such algorithms as fuzzy logic were not found to be suitable or appropriate for the core

analysis algorithms.

Integrated, hon-de’ﬁermi‘nistic‘»
_design environment needed

Knowledge Base
Test Data
Manufacturing Data
Acceptance Data

Statistical Data Expert Judgement

Material
Processor,

: e
Updater

P -\
Data Expert
A<‘|\ Input

Probabilistic Structural Analysis
[ St Ontimization

T o
Error Bounder

Output
Distributions

¥ P
Probabilistic Constraint Manager

TR
=
N
Probabilistic Response Surface %
Model Helper Generator
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SIGNIFICANT CHALLENGES REMAIN

The current technologies used in probabilistic design appear to meet the design
environment requirements in terms of basic capabilities. However, these methods lack the
necessary robustness to be deployed to the design floor. Fast probability methods fail to
converge for certain problem formulations, the output predictions have unstated or unknown
accuracy, and the methods still require that the users be probabilistic experts.

The future design environment for advanced aerospace systems will involve many
types of data and information to be integrated into the prediction system. The effective
approach is to more fully utilize expert systems and their knowledge bases to provide
interfaces to the tools, to assist in data preparation, and to provide “error traps” for complex
modeling. Reliability networks are needed to represent the overall system being designed, to
provide “what-if” modeling capability, to provide weighting functions for decisions on
development investments, and to rigorously support reliability updating as new information
is obtained. A critical need is to have the ability to merge soft data (engineering judgment)
along with crisp data (e.g., experimental data) in rational ways that minimizes bias while
fully retaining evaluative links to the data sources.

Significant challenges remain

@ Probabilistic tools are not yet robust
= Methods sometimes fail to converge
= Modeling accuracy levels are not known
= Applications require expert users

# Integration with non-traditional methods is
required
= Reliability networks with updating
= Integration of soft and crisp data
» Expert systems and knowledge bases

May 30, 2001 T. A. Cruse, Consultant 10
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FAST PROBABILITY ALGORITHM ROBUSTNESS TESTED

As part of the AF HCF program, the Consultant applied some of the standard fast
probability integrations, as provided by Southwest Research Institute, to a simple 1D
oscillator design problem posed by GE Aircraft Engines (GEAE). The 1D model was sharply
peaked in the form of the shown limit state. A mathematically equivalent form of the same
limit state can be derived that is essentially an inverse of the shown state. That equivalent
form did not have the indicated problems in computing predicted reliabilities.

The GEAE problem had seven random design variables. They derived eight design
cases that had differing nominal conditions for each of the seven variables. Using a design of
experiments (DOE) approach, GEAE determined values of the design variables for each
design case that had low probabilities of failure (third column). The Monte Carlo method was
used with different numbers of simulations (second column) to make what were taken to be
converged reliability predictions. The remaining three columns show the Advanced Mean
Value Plus (with iterations), First Order Reliability Method, and Second Order Reliability
Method predictions. In the form of the peaked response model of the 1D system, each of the
methods failed for one or more of the DOE cases. The problems are not associated with the
so-called multiple-limit state problem for fast methods. Rather, they seem to be purely
numerical problems associated with a poorly resolved limit state.

1

j[l_{ m._gr\é_ } } +[2‘§' m% }
( ha )-LFMSF- [ nowt S{N-N o} ] [ v S-(N-N nows) | ( p A]low.Nom) Cieo
100

D Nom P Allow

*Strongly-peaked response function form for limit state
*The limmt state form resulted in poorer numerical behavior
*Problem is similar to what occurs in numerical optimization
algorithms
DOE Case | N_sims MC (TAC) AMV+ FORM SORM
2 600K 0.00017 0.00016. = 0.0000 ~10NM26
4 200K 0.00763  0.00764 . ~10M32  ~10M42
6 600K 0.00059  0.00059 0.0000 0.0000
8 200K 0.01440  0.99980 ~107M25 0.0000
10 600K 0.00369. 0.00356: 0.00309 0.0037
12 200K 0.03040  0.02940 0.999380 0.9999
14 200K 0.02448 0.02335 0.02200 0.0239
16 200K 0.08477. 0.08210: 0.07940 0.0834
May 30, 2001 T. A. Cruse, Consultant 11
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SMART ENVIRONMENTS NEEDED

Some of the conclusions reached by the Consultant regarding the current probability
integration algorithms are indicated. The fact is that fast methods are really faster than Monte
Carlo. There is little doubt to this observer that fast methods will be needed for future
aerospace systems design. However, their deployment will not be accepted until the
shortcomings are rigorously addressed. Research sponsors and program managers must link
the development of future tools to requirements that address these needs.

Monte Carlo methods will also be required. While typically taken to be “truth” there
are significant capabilities that these methods must also contain in order to be used in this
- future design environment. The needed capabilities include the ability to capture the so-
called probabilistic sensitivity factors that are critical to the design process. Such factors are
used to narrow the problem space, to allocate information resources, and to compute
confidence intervals. Monte Carlo methods must also have their own automated simulation
error controls that adaptively adjust the simulation numbers to the outcome probability of
failure results.

All methods used must make modeling error bound estimates for each problem. The
error bounds are required to support system certification and to compute confidence interval
estimates.

All probability integration algorithms
require smart operating environments

# "Fast” probability algorithms are faster, but...
w Robust convergence is required
s Algorithm error bound estimates needed
= "Erroneous use” traps needed

@ Monte Carlo algorithms working with
response surface models are much more
robust, but...

= Sensitivity factors needed near failure condition
(MPP)

= Automated “error” convergence control required
# All methods require known modeling errors

May 30, 2001 T. A. Cruse, Consultant 12
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CONFIDENCE INTERVALS ARE REQUIRED

Classical statistical confidence intervals are mathematically linked to the quantity of
experimental data. As such, statistical confidence intervals are not appropriate to the future
NDNTM design environment. The fact is that aerospace vehicle design, as opposed to
electronic device manufacturing, cannot be evaluated by replicated system failure testing!
Yet, confidence intervals are still required — we need to be able to answer the question of
“how good is our estimate?”

Bayesian (belief) networks are the effective mathematical means for computing
engineering confidence intervals (as opposed to statistical confidence intervals). Some would
call these intervals assurance intervals to make the distinction clearer but the word
“confidence” appears to be the most meaningful to engineers. Bayesian networks allow many
kinds of answers to the indicated questions to be integrated in estimating the range of
outcomes.

Certainly, the key issues addressed in the Verification and Validation process for
analysis methods also contribute to making such confidence or assurance estimates.

The next big issue is calculating
“confidence” or “assurance”

whe

@ Statisticians have standard tools for dealing with
finite data, e.g., confidence intervals

= Statistical confidence intervals typically drive design data
requirements

= Statistical confidence intervals define data quality

@ Design must analytically account for the “quality” of
data (information) and models
» How “confident” are you about your data (information)?
= How “confident” are you about your data model?
= How “confident” are you about the physical model?
# Assurance is a by-product of a process approach to
“verification” and “validation”

13
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DISTRIBUTIONS HAVE DISTRIBUTIONS

As a simple example, I illustrate the effect of uncertainty on the seven input
distributions used for the GEAE 1D oscillator test problem. Again, I acknowledge the
support of SwRI through the use of their Nessus code to make these calculations. The
algorithm is base on outer “do loops” of Monte Carlo simulations that account for the
variability in the input variables. ;

In each case shown, each random design variable’s distribution parameters, the mean
and the standard deviation, was assumed to have a uniform distribution. The “width” of the
uncertainty, or its interval, was defined by the coefficient of variation of that parameter. Two
cases were taken where the mean and standard deviation had intervals of 5%, 10%
respectively, and 0.5%, 1.0% respectively. The results are stated in terms of the two-sided
(upper and lower bounds) for the predicted probability of failure of 0.0144. That is, how
large (or small) might the probability of failure be if we don’t have perfect information on the
input variables? The simulations do not include the effect of modeling errors!

Distributions on distributions

i Nessus code courtesy of SwRI J

# Input data models are @ MC simulation of

themselves uncertain simulation results:
@ GEAE HCF Problem « Nessus/Confidence
= MC (200K): P; = 0.0144 + 90% LB: P; = 0.0000044
# Uncertainties assumed « 90% UB: P; = 0.425
on distributional + [90% LB: P, = 0.0081]
parameters + [90% UB: P, = 0.0238]

= Uniform for , o L o
. COV for 1 = 5% [0.5%] 4 Still must account for

= COV for 6 = 10% [1%)] modeling errors

May 30, 2001 T. A. Cruse, Consuitant 14
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VERIFICATION AND VALIDATION

Design analysis methods themselves have uncertainties. Verification addresses
whether or not the computational methods that are used accurately represent the assumed
model. Validation addresses whether or not the model accurately represents the underlying
physics that is being modeled. Both steps are critical.

System certification addresses both the process and the outcome. An example is the
FAA certification of the design of critical rotating parts in commercial aircraft turbine
engines. The certification process requires a complete verification and validation of the tools
used — deterministic tools today — to certify the safe life predictions for these critical engine
components.

I am certain that such verification and validation requirements will exist for the
NASA space access program. Such methods are now being developed in detail for the
national nuclear weapons certification program. The AIAA has published a V&V guide for
CFD while the ASME has just approved a code committee action for finite element
programs. No such effort currently exists for probabilistic methods.

—

Verification and Validation methods
~are required for new system design

# All system behaviors have uncertainties
= Verification addresses coding of models
= Validation addresses accuracy of models

# Certification is based both on the process
and the outcome

# System level V&V will be required for 31
Generation RLV certification

# Sandia/DOE, AIAA (CFD), ASME (FEM)
V&V efforts ongoing and can be used

May 30, 2001 T. A. Cruse, Consuitant 15
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CONCLUSIONS

Probabilistic design is not some future thing. It is here today. It is the right approach
to some of the most critical design issues of risk-based decision making, cost reduction, and
testing. However, the design environment needs real work to be done in order to meet the
needs of certifying complex aerospace systems. Finally, system certification must include
work on the verification and validation of the probabilistic methods that we will use. NASA
Program Managers are in a position to address many of these needs in their future research
procurements.

Conclusions and recommendations

"y

@ Probabilistic design is here today
» Rational process to support risk based requirements
= Rational process to evaluate cost reduction vs. risk trades
= Rational process to define testing requirements

# Probabilistic design environment needs work
» Integration of disparate information & models needed
» Robustness and accuracy issues must be resolved
= Smart design environment needed

# Verification and Validation (V&V) effort needed
= Quantify the role of modeling uncertainties

= Quantify the effect of uncertainties on predicted
performance

16
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Figure 1

MotiVation

» Moving from deterministic design to robust/probabilistic design methods
amounts to an admission that uncertainty exists and has a significant impact
on system performance

»  Want to analytically answer the questions: — l} robabilistic Des gnj
- "How much design margin is really necessary?
— How do design parameters impact the uncertainty in performance?

— 3 3 2
‘What can be done to reduce this impact? Robust Design

¢ Obstacles to implementation:
— Organizational inertia
— Lack of probabilistic analysis tool to bridge the gap between deterministic and
probabilistic methods
— Computational Costs, if not approached intelligently

www,usd!.f*ech.cdu
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Figure 2
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The Design Process Paradigm Shift

¢ A paradigm shift ' is underway that ‘attempts
to.change the way complex systems are bemg
designed

+ ‘Emphasis - has - shifted - from- design for
performance -at ~any "cost to .design for
affordability

» ‘There is a mneed for. a - multi-disciplinary
approach- to the problem: based -on: more
sophisticated higher fidelity tools

¢ Abwut Destpn

50%

Cost Commitied

Knowles

+ Forecasting . with  a high ' probability of
success the: ¢conomic viability of: the system
in the early phases of design appears to be the
key to-success

» Due to:-the life "cycle -implications” of this 0BT
approach’ 'a  meed exists - to. .creatc . an
environment  that - virtually - designs;. ‘tests,
certifies, ~manufactures,  and operates  the
system, ~-while @ accounting - for - ‘design
ambiguity, uncertainty and risk

. DxmnIru Mavis

Georgia Institute o ac nole:
Wiate, GA 303300030 Ays/4
www,asd].gatech ed 3
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Definition of Affordability

T I
Affordability: The ratlo of benefits provided or gained from the system over the cost of achieving those beneﬁts
In a probabilistic, Modeling & Simulation approach, Risk is inherent in these estimates

' CDF
Weapon System Effectiveness

Investment to Achieve This Effectiveness

S & T Affordability =

Weapon System Effectiveness- Aircraft Example
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1 [ i | 1
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Roadmap to Affordability

.~ Robust Design Simulation :
Subject to *, Decision Making
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Synthesis, A Critical Need-

Creation of a Physics-Based M&S Environment

£ Integrated Routines

Table Lookup {ncreasing
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.o | Peormance - | Complexi
Conceptual Design Tools plexity
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irept Coupling of Analyses IS
i Performance
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{Higher-Order Methods)
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Response Surface Methodology (RSM)

SR 2

* RSM is a multivariate regression technique developed to model the
response of a complex system using a simplified equation

» Regression data is obtained intelligently through the Design of
Experiments (DoE) techniques

» RSMis based on the design of experiments methodology which gives
the maximum power for a given amount of experimental effort

» -Typically, the response is modeled using a second-order quadratic
equation of the form:

k k k-1 -k
R=b,+> bx,+Y bxt+Y Y bxx;

i=l i=l i=l j=i+l

Where,
b, are regression coefficients for the first degree terms
b, are coefficients for the pure quadratic terms
b, ; are the coefficients for the cross-product terms

gr, Dimi}ri I'v\qv;'is £ Technol
eorgia Institute of Technoto,
Atlatta, GA s03ao0150 9 .S'Dl.

www.asd].gatech.edu

Figure 9

Design of Experiments

Purpose: Minimize number of experiments required for desired level of resolution !

Design of For 7 For 12 Equation
Experiments Variables Variables
Full Factorial 2,187 531,441 3*
Central 143 4,121 2°42n+1
Composite
Box-Behnken 62 2,187 -
D-Optimal 36 91 (0+1)(n+2)/2
Design
Factors
Run X, X, X, Response
1 1 1 1 I
2 +1 -1 -1 Y2
3 -1 +1 A v,
4 +1 +1 -1 Yi
5 -1 -1 +1 ¥s
6 +1 -1 +1 Yo
7 -1 +1 +1 Y7
8 +1 +1 +1 Vs
P A,
Bh Y 10 LUSDL
Figure 10

147



Parametric Description of a Wing Planform

Other Design Variables

for the Aerodynamic Screening

xwing
t/c at root
t/c at tip
Nacelle Scaling
Horizontal Tail Area

CL Design
Root Airfoil (loc. max. thickn.)
Tip Adrfoil (loc. max. thickn.)

Nacelle X-location

Dr. Dimitri Mavris
Georgia Institute of Technology
Atlaite, GA 30332-0150

www.nsdl.%fech.edu
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ASDL Probabilistic Method

AR

CDF
P
100% .E
Ey 2
E &3
Aero ;’:?
Structures 0% Objective
Criterion 1
or Requirement 1
Concept Space
F 3 ko et v Technology
§_§ \:’;// ] Space Requirements
. ot o 351 TG O DN [ N O DN ace
SYNTHESIS & SIZING ST TT g o o e ] Spac
ot 88l B i ferd e e
P | <d—— o o o e s [ B B B B
z Eil‘\/—'\—' a P g e g B B, B
i ——— <“/\//\/ I e i gy e S
Hmise m;/\//\/\..
Aol a g
o § S S~
R e Lt oy e
Dynamic
Contour
Plots

e Ieture f Technol
eorgia Institute of Technolo
Atlonra, GA 303330150 13 .S-DL

www.asdf gatech.edu

Figure 13

Additive Creation of the Overall Environment
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Options for Probabilistic Design
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Figure 15

Fast Probability Integration (FPI)

FPI manages program execution while
handling up to 100 deterministic (x) or
probabilistic (y;) variables, with capability for
expansion
Establishes design feasibility
Identification of most critical constraints
Creates probabilistic sensitivity derivatives
and CDFs for each objective & constraint
Assessment of new technologies impact
deterministically or probabilistically
Probabilistic solutions for a set of design
variables subject to uncertainty _
« |dentification of feasible and/or robust solutions, by assigning random
distributions to each design variable, within the range of applicability, and
allowing for operational and manufacturing uncertainty
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~ Technical Feasibility vs. Economic Viability

Feasible and Non-Feasible,
Viable Solution Non-Viable Solution
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Figure 17

Addressing Technology Benefits,
Penalties and Confidence
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New Constraint CDFs through Technology Infusion

Technologies have the affect of shifting the response distribution such
that an acceptable confidence in meeting the constraint or objective is
obtained

Examine Feguible Space Constraint
Cumutative Distribution
Functions (CDFs)
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JPDM- Mapping the Solutions
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Technology Identification Evaluation Selection
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EXAMPLE APPLICATION

The TIES method developed a few years ago in response to some very aggressive
vehicle concepts that could not meet future performance or economic objects, especially with
present day technologies or geometric perturbations. New technology infusion was the only
option. Yet, the cost conscious industry was very concerned with investment cost and risk
associated with developing and infusing new technologies that have a great deal of
uncertainty. Thus, a means to quantify the impact in terms of performance, cost, and risk in
the early phases of design was needed.

Hence, the Technology Identification, Evaluation, and Selection method was created.

Example Application

. Aggressivé economlc 'a‘ridw;éi’formance objectives of
concepts likely cannot be meet with present day technologies

* A “focus on the bottom line” has forced many aerospace
companies to dismiss new, innovative, and revolutionary
designs due to the potential risk of profitability loss

* Yet, if a technology can be shown to improve a system at low
risk, it may buy it’s way onto the aircraft

* A comprehensive and structured process, applicable to any
system, was needed to quantify and forecast the impact of
emerging technologies while accounting for technological
uncertainty. This method is

TIES

Technology Identification, Evaluation, and Selection

gr‘. Difniiiri ggv;'is £ Tochnol #'
eargia Institute of Technology
Atlanta, 6A 30332-0150

32 22 SOL

www.osdl.gatech.edu

Figure 22
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Problem Definition

. s ; ; AR

Societal Need: Design Requirements:
Desire for a next generation supersonic aircraft Through QFD and brainstorming
Increased commercial traffic growth exercises, the customer requirements
Increased comfort, safety, and affordabitity . were mapped to quantifiable

Potential Concept Class: engineering parameters

High Speed Civil Transport

(Concorde class derivative )

Parameter r’]"argcf{ Units
Porformance
Approach Speed {(Vag,)l <155 kts
. ;e FAR 36 Stage I Flyover Noise (FON; =106 EPNLAB
TCC} migal Landing Field Leagth (Landing FL) £ 1L000 f
Criteria FAR 36 Siage 1L} Sideline Noise SLN)| <103 EPNLAR
Takeoff Field Length (TOFL) <1100 ft

Takeoff Gross Weight (TOGW) < 1,000,000 ibg

BEconontcs

Acquisition Price (Acq $) | minimize | FY96 S

Research, Developuient, Testing, and

Evaluation Costs (RDT&E).

Feonomic Average Required Yield per Revenue
- Passenger Mile (3/RPM)
-nena Total Adrplane Related Operating Costs
(TARGC)

Or. Dimitri Mavris Dimet Operating Cost plus Iaterest (IDOC+Y]  minimize FY96$
S S e
Harta, ¥
www.asgl gatach,edu . 23 S

minimize | FY96 §M

<$0.10 FY96s

sinimize FY96 8

Figure 23
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DEFINE CONCEPT SPACE

With the requirements defined, a potential class of vehicles must be defined. A
structured means of doing so is with a Morphological Matrix. The morphological matrix is
nothing more than a decomposition of all possible contributing elements of the system. It is a
means to brainstorm and think out of the box for potential solutions to the problem.

For example, the project manager could bring together all of his experts and
decompose the system. Do we want a wing and tail vehicle? Or a wing and canard? And so
on. If you do this for each element of the system, then you have effectively defined the
alternative concept space which may have mission parameters, technologies, and so on.

Once this matrix is sufficiently defined, one must establish a baseline to continue on
with the TIES method. You do this by selecting one element from each row like the circled
items, usually present day capabilities. This is your baseline that you will do all deviations
on.

Next, that system is further decomposed into geometric and propulsive parameters
that will define the design space to be investigated for feasibility.

Define Concept Space:
S

Alternatives

Space of Alternatives
~ Began with a Concorde-class aircraft and modified based on market studies
— Decomposed vehicle class into system characteristics and characteristic
alternatives to define the component alternatives and potential technologies
through a Morphological Matrix
— Baseline configuration (circled) established from the characteristic alternatives
representative of present day capabilities

- Mission defined based on market requirements

Characteristics 1 2 3 4

i Wing, Tail & .

Vehicle Corort Wing
Fuselage

Pilot Visibility

Range (nmi) |52 5000

Passengers

Mach Number

Vehicle Cl

Oval

Conventional &;
Nose Rroop

6500
320

27

Mid Tandem

Type .2 Turbine Bypass Fag Flade
Materials High T Comp.
RQL, LPP
Internal . . Mixer Ejector &
Flow Alteration Mixed Ejector Acoustic Liner
Conventional cc

fals,

NASA Uangiey Ravearch Cantee jRY{5t) Tmaige & £L-1988-80001 -
NLFC Active Control HLFC

Materjals Titanium I'?gh Temp.
L . . Integrall; Spanwise

Dr. Dimitei Mavris legrally pan "

Georgia Institute of Technology Process | Stiffened Stiffened Monocoque

Atlanta, GA 30332-0150 24

wwwasdl.gatechedy

Struct Aero| Propulsion Mission{ -Config

Figure 24
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DEFINE CONCEPT SPACE: DESIGN SPACE

With the requirements defined, a potential class of vehicles must be defined. A
structured means of doing so is with a Morphological Matrix. The morphological matrix is
nothing more than a decomposition of all possible contributing elements of the system. It is a
means to brainstorm and think out of the box for potential solutions to the problem.

For example, the project manager could bring together all of his experts and
decompose the system. Do we want a wing and tail vehicle? Or a wing and canard? And so
on. If you do this for each element of the system, then you have effectively defined the
alternative concept space which may have mission parameters, technologies, and so on.

Once this matrix is sufficiently defined, one must establish a baseline to continue on
with the TIES method. You do this by selecting one element from each row like the circled
items, usually present day capabilities. This is your baseline that you will do all deviations
on. ~
Next, that system is further decomposed into geometric and propulsive parameters
that will define the design space to be investigated for feasibility.

Define Concept Space:
Design Space

Design Space
- Design space was defined with geometric and X4
propulsive variables from a decomposition of baseline
— Ranges established to capture as many configurations as
possible, from an arrow to a double-delta and push the
state-of-the-art in propulsion capabilities
— Initial feasibility is sought within this space

Variable | Minimum | Maximum |* Units Description [,,/3’ ~ ‘
sw 7500 9000 f* . |Wing area “" Example configurations
g
TWR 0.29 0.33 ~ Thrust-to-weight ratio
TIT 3000 3400 °R  [Turbine Intet Temperanre 4 4 4 < 4 4
FPR 3.5 4.5 ~ Fan Pressure Ratio
GOPR 18 21 ~ Overall Pressure Ratio 4 4 d 4 4 4
Cldes 0.68 0.12 -~ Design lift coefficient
X2 1.54 1.69 ~ LE kink x-location* .
X3 2.1 236 ~ - |LE tip xJocation* 4 ( < ( - (
X4 24 2.58 ~ TE tip x-location*
X5 219 237 ~  |TB kink x-location* @ 4 4 4 N 4
X6 2.18 25 ~ TE root x-location*
Y2 0.44 0.58 ~ LE kink y-location*®
t/c_root 3 5 %  [Wing root t/c ratio 4 4 & 4 w
t/c_tip 2 4 % Wing tip t/c ratio
SHref 400 700 * Horizontal Tail area 4 < ¢ 4 4 4
SVref 350 550 i |Vertical Tail area
* Variables Nondimensionalized by wing semi-span 4 4 ( { 4 4
Beorgrn st gure of Technol A,
orgia institute o echnotogy
Atlarita, 6A 30332-0150
w;/;?::dl&afechs.edu 25 .SDL

Figure 25
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MODELING AND SIMULATION: VEHICLE MODELING

Once the definition of your design space is established, you need an environment that
will model the vehicle and allow you to see how the customer requirements are influenced by
the design space. Typically, one uses a sizing and synthesis tool. Yet, standard tools must be
enhanced for non-conventional configurations like an HSCT. This is due to the fact that most
tools are based on historical data and must be enhanced with higher fidelity analysis tools to
give reasonable results. In this example, the aerodynamics internal to the sizing tool were
replaced with higher fidelity aerodynamic metamodels which would capture the entire design
space under consideration.

This then creates an HSCT specific, physics-based modeling and simulation tool and
you are ready to investigate your design space.

Modeling and Simulation:
Vehicle Modelmg

R

M & S . . ALCCA (Aircraft Life-Cycle Cost Analysis): Developed by
environment. NASA-Ames and enhanced by ASDL; calculates life-cycle costs

* Relates responses to inputs via a physics-based and airline econotnics for transport airerafl

. FLOPS (Flight Qptimization System): A NASA-Langley
M &S environment vehicle synthesis and sizing code; well-suited for the conceptual

re and preliminary design of subsonic transport aircraft.
* Metamodels are employed to facilitate the use of
higher-fidelity analysis for unconventional
configurations

Input Variables

Response Data

Response = f (design variables), or
= f (technology “k” factors)

Oulput Responses

Dr. Dimitri Mavris

Georgia Institute of Technolcgy
Atlanta, GA 30332-0150
www.asdl .gatech.edu

Figure 26
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INVESTIGATE DESIGN SPACE: SYSTEM METRIC SENSITIVITIES VIA
PREDICTION PROFILES

The RSEs can be visualized within the JMP statistical package with the prediction
profile feature shown here. As a side note, system metrics are synonymous with customer
requirements.

I want to point out the key info here in the prediction profile. First of all, the metrics
are listed on the left and the design variables on the bottom in a non-dimensional form where
-1 is the minimum and +1 is the maximum. The redline, or hairline, corresponds to the
current value of the design variable settings. And the metric values that result from the
current design variables is shown in green. As you move the hairline or change the design
variable value, the metrics automatically update.

You can see the influence of each variable on the metrics by the magnitude and
direction of the slope. For example, looking at thickness to chord at the tip we can see that as
we increase the thickness, the TOGW also increases.

You can also optimize your design variable settings with the desirability feature. You
can place the constraint values or the direction that you want a metric and then determine the
optimal settings of the design variables. I have shown here the design variable non-
dimensional values that correspond to a maximum desirability.

You can also immediately identify the upper and lower bounds of the design space,
but you are not sure how close the space is to either value. Is most of the space near the lower
bound or the upper bound? To do so, one simply extract the RSEs that are behind the
prediction profile and execute a Monte Carlo simulation on those equation with the design
variables allowed to vary anywhere within the defined ranges.

Investigate Design Space:

System Metric Sensitivities via Prediction Profiles
S AR R

Metric Upper/Lower bounds of Intluence of parameter on fesponse
Responses the design space Hairlines move and update (either T or { or no influence)
responses in real-time The larger the slope, the greater the influence

SLN

$SIRPM 5 05

T2t o T[TesT|T o

1 17" -1 -1
00 o & I b
g o o o b 4 & EI
raééaasgaaxﬁ J| g
. “.1" min value of “Y2”
Ij)ﬂlﬂg“ ) «0.63” current value of “Y2" Desirability is an
Variables “17 max value of “Y2” optimization technique
B;f?;:;"m m:uw’-i:af Techmalogy All are in a non-dimensional space A'
T e 2 SOL

Figure 27
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HSCT FEASIBILITY ASSESSMENT: DESIGN SPACE REPRESENTATION

A result of examining the design space is a cumulative distribution representation of
you metrics as a function of design variables. Let me explain the information that you get
from doing this.

First, you can see the bounds of the design space and how much and or how close the
space is to your metric constraints.

Second, you can readily identify the technical feasibility of the design space by
looking to see how much of the space is on the feasible side of the constraint target and then
read off the Probability value. For example, 4.6% of the space can satisfy the TOFL
requirement.

Third, if you look at the metric value at 0 probability, that value is the best that you
can EVER achieve with the design space you’ve defined.

And finally, and most important, you can see which constraints are killing you and
are the “show-stoppers” for the program. In this case, none of the space can satisfy the
sideline noise AND the space is very far away from the target. Hence, some significant
improvements are going to be needed to obtain a feasible solution.

So, what can you do?

HSCT Feasibility Assessment:

Design Space Representation

100%
90%
80%
70%

Important Info:

*Bounding of
design space
based on
uniform design
variable
distributions

*System
feasibility easily
identified

* At the P=0%,
the
corresponding
design is the
“best” that can
every be
achieved with
design'space
considered

*Concept “show- -
stoppers” rapidly
identified

Probability

Dr. Dimitri Mavris

Atlanita, GA 30332
www.asdl.gatech. ed
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TECHNOLOGY IDENTIFICATION

Based on the fact that technologies are needed to improve the system feasibility, 11
applicable technologies and their associated TRLs were identified either through a literature
search or provided from various entities. As you can see, most of the technologies considered
are at a TRL of 3. And if you recall from the previous slide, that implies that there is a lot of
uncertainty and the anticipated impact has a low chance of being achieved

Technology Identification
» 11 technologies were established from the needed improvements identified in the
system feasibility investigation, in addition to enabling technologies
» Associated Technology Readiness Levels (TRLs) were established from a
comparison of the current research activities to the TRL descriptions
¢ Technology Compatibility rules were determined from brainstorming sessions

(Name) Technology TRL Purpose
(T1) Composite Wing 3 Wing weight reduction
(T2) Composite Fuselage 3 Fuselage weight reduction
(T3) Circulation Control 4  Increased low speed performance
(T4) Hybrid Laminar Flow Control 3 ise drag reduction
emzmsip>(TS) Environmental Engines 3 it Bo>fuel burn, and emissions
(T6) Advanced Flight Deck Systems 4 etic vision removes fuselage nose droop

weight penalty
(T7) Advanced Propulsion Materials 3 - High temp. materials, reduced engine weight, lower
fuel burn
(T8) Integrally Stiffened Aluminam Wing 4 Wing weight and part complexity reduction
Structure
(T9) Smart Wing Structures 3 Reduced flutter and wing weight
(T10) Active Flow Control 3 Cruise drag reduction
> (T11) Acoustic Control 3 @huie T
Esz?gi:gi}':smx\g‘: of Technology A’
e e 29 SOL

Figure 29
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TECHNOLOGY IDENTIFICATION: TECHNOLOGY PRESENTATION
THROUGH MAPPING TO “K” FACTORS

Unfortunately, advanced technologies are difficult to assess in an integrated design
environment. As mentioned earlier, synthesis/sizing tools are typically based on regressed
historical data, which limits or removes the applicability to revolutionary concepts or
technologies. However, the impact of generic technologies can be quantitatively assessed
with technology impact factors, denoted as "k" factors herein, in the early phases of design.
These "k" factors modify disciplinary technical metrics, such as specific fuel consumption or
cruise drag that result from a sizing tool. The modification is essentially an incremental
change in the technical metric, either enhancement or degradation. In effect, the "k" factors
simulate the discontinuity in benefits and/or penalties associated with new technologies. -
This assessment is performed in the Technology Impact Forecasting environment.

Technology Identification:

Tecknology Representatlon through Mapping to “k” Factors

. Formulat10n in terms of elerﬁéntary Varlables does not lendltself
to disciplinary or multidisciplinary technology assessment

L/D

Conventional
models break down

¢ The assessment of new technologies must be addressed through
the disciplinary metrics (or technology “k” factors) since a
mathematical formulation is not yet available

constraints/objectives = flk_L/D,,, k_L/D  k_C, ...k T,k SFC,, ...)

gr Dlmo}r Mavris £ Tochnol %
eargia Tnstitute of Technology

Atlarita, GA 30332-0150

www.asdl gatech.edu 30 .—SDL
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TECHNOLOGY IDENTIFICATION: TECHNOLOGY IMPACT MATRIX (TIM)

Once the compatibility matrix is established, the potential system and sub-system
level impacts of each technology need to be determined. The impacts must include benefits
and degradations for an objective assessment.

Based on the probabilistic nature and issues regarding technological developments
described above, a Technology Impact Matrix (TIM) is formed for the technologies
identified in the Morphological Matrix. Recall that the impact in a synthesis/sizing tool is
simulated via changes in disciplinary technical metrics, "k" factors. Consequently, the
impact of a technology can be defined by a technical "k" factor vector whose elements
consist of the benefits and penalties associated with a specific technology. Each element of
the vector has an estimated impact value and an associated distribution based on the
technology's TRL. It should be noted that the impact value in the TIM is the “theoretical
limit". With this impact value, the technological uncertainty, or distribution associated with
a given "k" factor, is defined as a function of TRL and impact value. Not all technologies
will affect each element of the vector, but the vector must capture all technologies.

Technology Identification :
TIM: Technology Impact Matrix

« The technical metric impact shown
assumes that the impact values are

achieved when the technology is fully =

matured, i.e. TRL=9 5 F Ei g E
« This assumes that the technology can 3 :% = g 8

meet the anticipated benefit on 5 % 3 g z

schedule and within budget. §~ 5 24 E‘a’
* Impact values determined through 3 g é‘g 2

literature review and supplied by £

NASA Langley

Dr. Dimifri Mavris
Georgia Institute of Technology
Atlanta, 6A 30332-0150

www.asdlgatechedy
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TECHNOLOGY EVALUATION

- Next, the technologies identified are applied to the vehicle concept and evaluated. The
evaluation provides data and information to the decision-maker whereby selection of the
proper mix of technologies may be performed. Yet, the search for the mix that will satisfy
the customer requirements is dominated by the "curse of dimensionality”. Depending on the
number of technologies (n) considered, the combinatorial problem can be enormous. If all
technologies were physically compatible, then 2" combinations would exist considering an
"on" or "off" condition. In addition, the technology "k" factor vector that influences a
vehicle is probabilistic and a CDF must be generated for each combination, further
complicating the evaluation due to the “Curse of Uncertainty”. For example, to estimate the
impact of uncertainty of a technology combination, a Monte Carlo Simulation of 10,000
random cases are needed. Hence, 10,000*(2n) combinations would need to be evaluated. If
the computational expense of the analysis is acceptable, a full-factorial probabilistic
investigation could ensue. Yet, if the computational expense is too high, an alternate
evaluation method is needed. A potential method for technology down select is a genetic
algorithm formulation so as to obtain a more manageable set of alternatives for further
investigation.

Technology Evaluation

* The identification of the proper mix of technologies for a given system is

dominated by the curse of dimensionality

*  Curse of Dimensionality: the search space for the mix of technologies which
will “best” satisfy the system level metrics or attributes can be enormous,

even assuming only an “on”-"off” condition

— 2" combinations, where “n” is the number of technologies
. 11 technologies implies 2048 combinations
* 20 techﬁologies implies 1,048,576 combinations

— Computational expense of the analysis is the primary driver
* manageable: tull factorial investigation with metamodel representations
* unmanageable: genetic algorithms or alternative search algorithms

* Curse of Uncertainty: Uncertain nature of technologies further complicates
the evaluation since a probabilistic analysis is needed to evaluate each of the

2" combinations
grn Di‘rr\i‘{:ri A'I_u:v;is £ Technol
eorgia Institute of Technolo: .
Aﬂungfu, GA I30332—0150 g4 32 JDL
www.asdl.gatech.edy
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Technology Evaluation:
”K” Factor Mapping

R ] R AR
o If the technologies considered can be represented with “k’
representation of the system metrics can be used.
« For each row in the TIM, the benefits are summed and the penalties are
sumimed to bound a given “k” factor such that the ranges are defined for the use
of a metamodel representation. The ranges define the technology space limits.

factofs, a metamodel

Sum of Sum of

M . w n
Technical Metric "K" Factor Elements reductions increases

K Factor 1 0 +10
K Factor 2 -40 0

K Factor 3 | 220 +25 I

Range of “k” factor established from TIM

Response = f(k;, k..., k) as obtained from an application of RSM to acquire a
second order equation of the form:

R=b + ib,-ki + ibiikiz t kz_i Zk:bijkikj
— -

Dr. Dimi Mawis i=1 j=i+l
Geargia Institute of Technolo
atlorita, 64 30332-0150 33 J..Dl.

www.asd!.gatech.edy

Figure 33
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TIF ENVIRONMENT#*: VISUALIZATION OF THE TECHNOLOGY MAPPING

Visualization of the influence of the impact factors is performed in the prediction
profile feature of the JMP statistical package. The information obtained here is similar to that

of the design space investigation.

TIF Environment*:
Visualization of the Technology Mapping

[ Sensitivity of response to wing weigh

v

» Identify code
fidelity needed
to model a
techpology

» Impact of
degradation of
a technology
over the life of
the system

+ Forecasting
environment if
no specific
technologies
were in mind

*TIF js a by-
product of
applying TIES.
Bounds of the
“K” factors are
purpasefulty
determined, a
pure TIF
application,
‘bounds are
drbitrary

T T T
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Technology Evaluation

. Deterministic evaluation:

— For a given technology combination, the vector elements that describe the
technologies are summed and inserted into the metric metamodels and the
equation evaluated

— The result is a “theoretical” value of the metric due to the impact of the
technology combination

— Advantage: quick assessment and initial insight to technology impacts
* Probabilistic evaluation:

— Define each technology vector element as a function of TRL which will result in
a distribution for each “k” factor

~ The metric metamodel is evaluated as in the deterministic case except that it is
repeated numerous times for a given combination to simulate the uncertainty

— The result is in the form of a CDF for each metric
—Advantage: realistic assessment of the impact of technological uncertainty

» Assumption: the impact of the technologies are additive

Dr. Dimitri Mavris
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Technology Evaluation:

Full Factorial Investigation at “Theoretical’
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Technology Evaluation:
Full Factorial Investigation with NO Uncertainty

* Technology
evaluations are
instantaneous

* Sensitivities

« Big-hitters
readily identified

¢ Impact of
wchnology
degradations over
the life of the
vehicle

* “What-if?” and
“how about?”
games on the fly
without ever
having to ren
another analysis
code!!
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Technology Evaluation:

Sample of Probabilistic Assessment

. Each technology vector was defined as a function of TRL so as to determine the shape

distributions of the “k” factors T1=f( G s To=fCH , o ... ), etc..
* A Monte Carlo Simulation was executed on the response equauons to determine the resulting
distribution data s

T1, T2, TI+T2..

Metric Target

¢ The addition of more technologies may move the mean of the response depending on whether
the technology improves or degrades a given metric. If there is no influence from a given
technology, the mean will not be affected but the variance may increase
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Technology Selection:
Optzon 2: Technology F rontiers

R
Due to the multi- atmbute and probabilistic nature, wsuahzmg information or results from a
MADM approach is not very intuitive. Techrology Frontiers can solve this problem.

Technology Fronfier: the limiting threshold effectiveness parameter attainable from any
combination of technologies for different confidence levels.

“Best”

Ideal Effectiveness * Two primary effectiveness parameters, such
Sofution / Fasamees as Performance and Economics, can be
""""" 5 utilized to compare various technology
Techuology alternatives and may be constructed from a
g Combination user defined utility function for which
g Vidble maximization is desired.
5: Technology L
2 [ Region * Subjectivity introduced through weightings.
g
-% * Threshold limits may be placed on the
& Best” effectiveness and the investment cost and
= 1;‘;2‘;5: the combinations that satisfy the thresholds
Technology can be readily identified.
Frontier
e of Teshmolagy * v
Fimta ol kol Tavestment Cost * st comparivn meri 39 A’.S’DL
Figure 39

Technology Selection:
Option 2: Performance Effectiveness with NO Uncertamty
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Technology Selection:

Opftion 2: Comparison of Performance Frontiers
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Technology Selection:

Option 2: Comparison of Economic Frontiers
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Technology Selection:

Option 3: Resource Allocation

Confidence Intervals:
“Theoretical” f
10% Confidence

50% Confidence
90% Confidence 272274

T1 =

T2
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3
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Technologies:  T1: Composite Wing T2 Conposite Fuselage  T3; Circulation Control
T4: HLFC T5; Environmental Engines T6: Flight Deck T7: Propulsion Materials
T8: ISSA Structures T9: Smart Wing T10: Active Flow Control Ti1: Active Noise Control

* Decision-maker may readily identify a technology’s influence on a given system metric
and compare the performance influence and the economic influence.

» Compare confidence level to target reduction needed for feasibility

+ Identify the contribution of individual technologies to optimally direct resources

o oimi mas© 19 Provides sufficient SLN reduction, but extreme degradation to $/RPM
4 ASDL

Georgia Institute of Technology
Atlenia; GA 30332-0150
www asd].gatech.edy

Figure 43

Conclusions

B

* A comprehensive, robust, and structured process for the
systematic down-select of technologies for the problem at hand.

» Process provides valuable insight to the decision-maker in the
conceptual phases of design to optimally direct program
resources.

* No one technology combination can be considered the universal
solution since the selection process is riddled with subjectivity.
TIES allows for a quantification and tracking of the
subjectivity.

* Future work will focus on:

— Incorporating schedule and budget issues regarding the development of
technologies and quantifying the impact on a system

~ Create a recipe for 7IES based on generic problem that may be
encountered during a design process

Dr. Dimitri Mavrig
Geargia Instijute of Technology
232-0:

3:}:';%@ eac?\.edu 150 44 ;DL

Figure 44
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Nondeterministic Approaches
Potential for Future Aircraft Support

Dr. James M. Norton
Lockheed Martin Aeronautics
Fort Worth, TX 76101
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skills.

USAGE OF NONDETERMINISTIC MODELS

In the current aerospace environment, which poses continuing challenges to “do more
with less” the adverse effects of uncertainty on decision making must be recognized and
minimized. Nondeterministic approaches are predictive tools that permit uncertainties to be
quantified, by a variety of models, providing decision makers a sound technical basis for
trade-offs among performance, schedule and cost. The illustrative examples show a broad
scope for potential applications that don’t require specialized software or advanced statistical

8/13/2001

LOCKHEED MART'ME#

Usage of Nondeterministic Models

» Provides formal methodology to quantify the extent and

consequences of uncertainty inherent in engineering properties /
characteristics

Provides an alternative to “Worst Case” stacking often utilized

with deterministic methods
~,
—

—~
—

\/.\/\/4

» Concepts will be illustrated by three aircraft support related

applications

James M. Norton

Figure 1
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ASSESSING THE EFFECTIVENESS OF TIME CHANGE INTERVALS

One method of avoiding equipment failures is to remove the equipment from service
at fixed flight hour intervals. Although failures are avoided, some remaining equipment life
is lost and the total number of maintenance actions is increased. Analysis of various
conditional life distributions can help decision makers determine the appropriate policy.

LOCKHEED Mllnflﬂz#

Assessing the Effectiveness of Time
Change Intervals

» Equipment whose life exhibits wear-out characteristics can
be removed from service at fixed flight hour intervals
resulting in:

— Reduced failures
~ Increased maintenance actions
— Loss of potential remaining equipment life

» Analysis of the Nondeterministic equipment life
distribution can help decision makers determine the
appropriate policy.

8/13/2001 James M. Norton

Figure 2
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ASSESSING THE EFFECTIVENESS OF TIME CHANGE INTERVALS

Suppose a generator has a Weibull life distribution with mean = 800 flight hours and
a shape parameter = 1.1. A sketch of the life and conditional life distributions may provide
some preliminary insight as to the effectiveness of a time change after X hours of service.
The risk of failure prior to the time change, as well as the average remaining life lost, is
easily computed as shown from common spreadsheet functions.

LOCKREED MABT'NE#

Assessing the Effectiveness of Time
Change Intervals

An example -
Suppose a generator has a Weibull life distribution with mean = 800 flight hours. A literature
source suggests a Weibull shape parameter = 1.1. We wish to evaluate the effectiveness of
removing and replacing the generator every X flight hours.

ime ta Failure Distribution

PDE . - Time to Failure, given survival till X FH
1 - b
X
X shape
Probability failure prior to X = 1 - EXP (- (—Sc—ajﬁ )
Average remaining life =
Scale # EXP (K1 + GAMMALN (K2)) « (1 - GAMMADIST (K1, K2, 1, TRUE)) - X
shape
Where K1 = sc)a{le) i , K2 = 1+ I/shape, GAMMALN () = Excel Supplied Function

GAMMADIST () = Excel Supplied Function

8/13/2001 James M. Norton

Figure 3
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ASSESSING THE EFFECTIVENESS OF TIME CHANGE INTERVALS

The results in the table show modest reductions in failures from time changes (shape
=1.1), which need to be assessed in conjunction with the consequences of failure. The likely
results and sensitivity of results to variations in model parameters can be examined before
any data is available. Statistical estimation methods are used to draw inferences about model
parameters from data.

LOCKHEED M AT;—I—#
Assessing the Effectiveness of Time
Change Intervals
WEIBULL SHAPE
Time Change
Interval 1.1 1.3 1.5
20 20 20 # Time Changes
400 8.8 7.0 57 # Failures (Weibull
Renewal)
14851 13179 12032 Unused Life
10 10 10 # Time Changes
800 9.3 8.2 7.4 | # Failures (Weibull
: § : Renewal)
7160 5918 5044 Unused Life
. 0 0 0 # Time Changes
NC‘L:::‘Q‘: 10 10 10 # Failures S’Zﬁieb\'l:/‘a!lll)
0 0 0 Unused Life
TABLE ENTRIES ARE AVERAGES FOR 8000 FH A/C LIFE.
8/13/2001 James M. Norton

N Figure 4

178



A SUFFICIENTLY LARGE PROBABILITY OF A BRAKE FIRE

Frequently during landing / taxi military aircraft experience significant increases in
brake temperature which, if coupled with hardware failures in the fuel system, could result in
a fire during refueling. A nondeterministic model can estimate the frequency of fires, to help
determine what (if any) interventions are needed.

LOCKHEED MARTIN

A Sufficiently Large Probability of a
Brake Fire May Require New Support
Equipment or Design Changes

8/13/2001 James M. Norton

Figure 5
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CONDITIONAL PROBABILITY BRAKE TEMP

Key factors that determine brake temperature are defined during discussions with
technical experts. Each factor is characterized by a probability distribution, derived from
data and/or inputs from experts. The individual distributions are combined, reflecting any
significant correlations, to form the brake temperature distribution. Live testing under
realistic environmental conditions results in an estimated fuel ignition distribution that is
combined with the brake temperature to quantify risk.

Conditional Probability Brake Temp is
Hot Enough to Ignite Fuel
Ambient Temp Head Wind
i Brake Temp Fuel Ignition Temp
Gross Landing WT Touchdown Speed
i t t
|
Taxi Distance Ruuway Length Used Compute Probability Brake Temp
Exceeds Ignition Temp

Figure 6
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PRICING REPAIRS FOR A FIXED TIME PERIOD

To help customers plan for the costs associated with repair of equipment failures in
their aircraft fleet, a contractor may offer to provide repairs for a fixed time period at a pre-
specified price. One NDA approach to help establish an equable price is to model cost as a
compound random variable.

LOCKHEED M ATT_I#
Pricing Repairs for a Fixed Time Period

» All Equipment Failures that Occur During a Fixed Time
Period will be Repaired for a Pre-Specified Price

* One NDA Approach to Help Establish an Equable Price is
to Model Cost as a Compound Random Variable:
Total Cost=C, + C, + —-+C, where
Ci = Random Variable
Cost of i Repair
N = Random Variable

Representing
Number of Repairs

in the Defined
Time Period

8/13/2001 James M. Norton

Figure 7
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PRICING REPAIRS FOR A FIXED TIME PERIOD

Frequently, the number of failures to be repaired in a fixed time period can be
characterized by a Poisson distribution. Repair cost means and variances are then utilized to
compute the mean and variance of total repair cost. The risk that the cost of the repairs will
exceed the price charged can be assessed after a distributional form for cost is selected.

LOCKHEED MAHTIME%

Pricing Repairs for a Fixed Time Period

e The Mean and Variance of Total Cost are:

Mean 2‘::{' = Mean ]:N:] . Mean I: C:I

Variarice Total
Cost

Mean [N] o Vatance [ C] + I:Van'ance N:I . [:Mean C] 2

Where Ciis Independent,
Identically Distributed.

» Use Exact or Approximate Distribution to Evaluate Risk

PDF

Risk of Not Covering Costs

Cost

8/13/2001 James M. Norton

Figure 8
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DIVERSE SUPPORT RELATED APPLICATIONS BENEFIT FROM
NONDETERMINISTIC APPROACHES

The use of nondeterministic methods for support-related applications has a long
history, with many companies establishing formal specialty groups that concentrate on
application areas, such as safety, reliability, maintainability, and logistics support. Basic
models in the specialty area are generally well known and have developed some commonly
accepted standards for use. The rapidly increasing capability to collect, store, process, and
share data will reveal new relationships among variables, leading to the development of more
sophisticated nondeterministic methodology.

LOCKREED MAHT'NE#

Diverse Support Related Applications Benefit
from Nondeterministic Approaches

e Tech Order Changes (Often Inspection Related)
* Rates of Damage Accumulation

e Spares Requirements

* Warranty Provisions

» Repair Turnaround Capability

 Diagnostics / Health Monitoring

87132001 James M. Norton

Figure 9
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KEYS FOR SUCCESSFUL IMPLEMENTATION

As advances in nondeterministic methods are achieved, some basic keys for
successful implementation remain unchanged. Although the items listed are fairly obvious
and not exhaustive, they are easy to forget.

LOCKHNEED M‘BT'ME%

Keys for Successful Implementation

» Establish clear objectives / expectations for model
results

» Develop model structure with guidance from experts
in affected areas

» Collect sufficient reference information / data for
credible model parameter estimates

* Summarize / communicate results that are technically
rigorous, yet readily understood
— Avoid technical jargon
~ Delineate assumptions
~ Graphically depict results, where possible

8/13/2001 James M. Norton

Figure 10
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ANSYS Probabilistic Design System
Exploring Randomness and Scatter Reveals A Simple Truth

; Dr. Stefan Reh
Team Leader Probabilistic Design
ANSYS Inc.
Canonsburg, PA 15317
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ANSYS PROBABILISTIC DESIGN SYSTEM

In December 2000 ANSYS Inc. has released the version 5.7 of its ANSYS Finite-
Element program. This release (and any following ones) has a probabilistic design system
integrated into it. This tool enables users to take uncertainties of their Finite-Element model
input parameters into account. The probabilistic approach is more realistic and closer to
reality than the purely deterministic approach, which tends to ignore uncertainties. Using the
ANSYS Probabilistic Design System (ANSYS/PDS) users can quantify the quality and the
reliability of their products and consequently make informed decision on how to improve
their products with respect to quality and reliability.

ANSYS Probabilistic Design System

Exploring Randomness and Scatter Reveals a Simple Truth
IT’S A PART OF REALITY - EVERYWHERE

.

Probabilistic Design: Bringing Engineering closer to REALITY!

Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

Figure 1
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PROBABILISTIC DESIGN SYSTEM: INTRODUCTION

If we analyze a component (for example a turbine blade like those shown here), then
we start out with the fact that the component is described by a certain set of input parameters,
namely material properties, geometric extensions of the component and boundary conditions
that describe how the component is loaded and where and how it is fixed. Then the
component is analyzed, and as result we can look at its deformation and review the stresses
and strains. In addition, we can assess its fatigue lifetime or its creep behavior and such.
Probabilistic Design is based on the fact that all input parameters are subjected to scatter.
Take, for example material, properties. If you measure a particular material property then you
will observe measurement values that are different from specimen to specimen. Also, the
geometric extensions of a component can only be manufactured within certain tolerances. To
strive for perfection is physically not possible and even trying to get close to perfection is not
reasonable in financial terms. Also loads and boundary conditions are subjected to scatter,
i.e. there are some uncertain influences that we have to accept and live with. As a direct
consequence we have to face the fact that the output parameters are subjected to scatter as
well, i.e. they are uncertain as well. ANSYS has developed a probabilistic design system that
can take the randomness of such input parameters into account and provide the necessary
conclusions.

ANSYS Probabilistic Design System:
Introduction

Component
behavior

Component
description

= Material = Deformations
= Geometry =>Stresses
=>Loads = Lifetime
=»Boundary Condition (LCF,...)

As a consequence of the : T

uncertainties of the input
parameter there will be also
uncertainties of the resuits

Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

- Figure 2
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PROBABILISTIC DESIGN SYSTEM: FEATURES

The ANSYS probabilistic design system is available at no charge for customers
having an ANSYS license. It is automatically a part of any ANSYS product. It works with
any ANSYS model no matter what the underlying physics is. It allows for a large number of
random input and output parameters. The random input parameters can be correlated in order
to address random fields. Two widely used and very robust probabilistic methods have been
implemented, namely then Monte Carlo Simulation method and the Response Surface
Method. Both are available with various sampling techniques. In order to fit response
surfaces, the ANSYS/PDS offers several sophisticated regression analysis techniques.
Included are techniques to apply transformation functions for cases where a quadratic
response surface is not sufficient. Also filtering mechanisms can be used that will filter out
insignificant terms in the regression model in order to avoid the “over-fitting” problem. To
reduce the wall clock time of a probabilistic analysis, the PDS comes with a tool that will
automatically distribute the various jobs in a heterogeneous network of computers. This
includes the capability to submit a job that has failed due to CPU or network problems to
another CPU. Naturally, the ANSYS/PDS offers a great variety of tools to visualize the
probabilistic results, such as histogram plots, cumulative distribution plots, scatter plots,
sensitivity plots and so on.

ANSYS Probabilistic Design System:
Features

* The ANSYS/PDS is FREE for every ANSYS customer

. lt'works with any ANSYS model (static, dynamic, linear, non-linear, thermal,
Structural, Electro-magnetic, CFD ...)

* It allows for a large number of random input and output parameters
* [t has 10 statistical distributions for random input variables
* The random input variables can be correlated
* Probabilistic methods:
Monte Carlo - Direct & Latin Hypercube Sampling
Response Surface - Central Composite & Box-Behnken Designs

* Sophisticated regression analysis capabilities for response surface fitting
(automatic transformation functions for a “more than quadratic” fit, automatic
filtering of insignificant regression terms to avoid “over-fitting” problem)

* Use of distributed, parallel computing techniques for drastically reduced wall clock
time of the analysis

¢ Comprehensive probabilistic results (convergence plots, histogram, probabilities,
scatter plots, sensitivities, ...)

e State-of-the art statistical procedures to analyze and visualize probabilistic results
e ®

Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

Figure 3
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PROBABILISTIC DESIGN SYSTEM: CUSTOMER BASE

As many people know, ANSYS is widely used in the industry, and here you see only
a few of our customers who gave us permission to show their company logo. The ANSYS
Probabilistic Design System is an integral part of ANSYS 5.7. More than 35 companies are
already using it worldwide.

ANSYS Probabilistic DeS|gn System:
Customer Base

ANSYS Customer Base

* All “Top 10” Fortune
100 Industrial
companies

* 73 of the Fortune 100
Industrial companies

* Over 5,700 commercial
companies

* Over 40,000 commercial
customer seats

Over 100,000 university
licenses

Probabilistic Design
¢ Available in ANSYS 5.7

» Used by 35 companies
worldwide

Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

Figure 4
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RELIABILITY OF COMPONENTS: EXAMPLE TURBINE BLADE

As an example for the application of the ANSYS probabilistic design system, the
probabilistic analysis of a turbine blade is shown here. The example is a cooled (hollow)
rotating blade. The probabilistic analysis includes the randomness of a total of 17 input
parameters. For example, the blades are manufactured by precision casting. During casting of
the blade a slight shift of the core that makes up the hollow cavity can occur. This core shift
makes the wall of blade thinner on one side and thicker on the other. Also there is an
oxidation protection coating on the hot gas surface of the blade. The thickness of the coating
is not an exact value after it is applied, but variations from the targeted thickness may appear.
It is not necessary to explain all random input parameters as listed here. Suffice it to say that
the random input parameters are from all categories, namely geometry, material and loads.
Also it should be emphasized that various different statistical distribution functions can be
applied to describe and quantify the randomness of the input parameters, such as the
Gaussian distribution, the uniform distribution or the lognormal distribution (the
ANSYS/PDS has many more). This Finite-Element model has about 60,000 elements and
180,000 nodes. One single analysis run includes a thermal analysis to evaluate the
temperature field (shown here) and a structural analysis to evaluate the thermo-mechanical
stresses. Based on these results the low cycle fatigue lifetime (LCF), the creep lifetime and
the time until the oxidation protection layer has been eroded through is calculated. One
complete analysis as described takes about 2 hours.

Reliability of Gas Turbine Components:
Example Turbine Blade

17 Random Variables for input variables
Geometry parameters

» Cooling channel shift (Circumference) UNIF(-0. 6,0.6)
* Cooling channel shift (Axial) UNIF(-0. 6,0.6)
* Thickness of oxidation protection 1.0G(0.3,0.03)
Material parameters

3 Output parameters

o LCF lifetime
s Creep lifetime
« Qxidation lifetime

¢ Young's Modulus (*) NORM(1.0,0.04)

* Density (*) NORM(1.0,0.05)

* Thermm. Expansion (*) NORM(1.0,0.05)

» Heat conduction (*) NORM(1.0,0.05) Temperatures
+ Heat capacity (%) NORM(1.0,0.04)

* Oxidation depletion rate (*) 1.0G(1.0,0.05)

Strength related material parameters

« LCF curve (*) LOG(1.0,0.15)

« Creep rupture curve (*) L.OG(1.0,0.10)

Thermal Boundary Conditions

* Hot gas temperature NORM(0.0,25.0)

* Hot gas heat transfer coefficient (*) - 1L0OG(1.0,0.2)

* Cooling air temperature NORM(0.0,10.0) . .
» Cooling air heat transfer coeff. () LOG(1.0,0.1) Thermo-mechanicat analysis
« Hot gas mass flow (*) NORM(1.0,0.03) 60’000 Elements (quadratic)
+ Cooling air mass flow (*) NORM(1.0,0.05) 180’000 Nodes

(*) Factor relative to nominal value or curve 2 h of CPU time per analysis

Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

Figure 5
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RELIABILITY OF COMPONENTS: FAILURE PROBABILITY
OF TURBINE BLADE

Crucial in today's business environment is the development of reliable products. Only
reliable products keep the occurrence of premature failures (a failure that happens before the
end of the warranty period) at an acceptable level or avoid such failures completely. The
most important measure for a reliable product is a low failure probability. As a result of the
probabilistic analysis in this diagram, the probability of a failure due to one of the three
failure modes (LCF, creep, oxidation) is plotted versus the operation time in years. A
particular failure probability can be derived from this plot by choosing a value on the X-axis
for the operation time (i.e. the time how long the blade is supposed to be in service) and then
going up to the probability curves related to the failure modes and reading the probability on
the Y-Axis. In this diagram, the results calculated with the “response surface method” are
compared with the results gained from 500 Monte Carlo simulations. In this example, the
Monte Carlo Simulation results provide benchmark values the “response surface method”
results should agree with for the failure probability ranging from 2% to 98%. Obviously,
there is a very good agreement between the results of the two methods in this probability
range. :

Reliability of Gas Turbine Components
Failure Probability of Turbine Blade

Failure 'Probability of Individual Failure Modes

99999 LCF Lifeti
_________ ifeume
50999 of Blade

o
999 ................................................... L

[ ] ([ d
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™ Response Surface
Method
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RELIABILITY OF COMPONENTS: SENSITIVITIES FOR TURBINE BLADE

Probabilistic methods also automatically deliver probabilistic sensitivities. These
sensitivities describe how much the scatter or the failure probability of a particular random
output parameter (shown here is the LCF lifetime) is affected by the scatter of the individual
random input variables.: The ANSYS/PDS sorts the input variables into two groups - the
significant and the insignificant ones. Then the significant input variables are ranked by the
importance and plotted. These probabilistic sensitivities provide highly valuable information
in many ways. If the resulting failure probability is too high, then we need to improve the
“design in order to achieve an acceptable level. The sensitivities clearly indicate which input
variables are the drivers of the high failure probability. Hence, the input parameters must be
tackled in the order of their importance. There is no point in focusing on unimportant
parameters. Sometimes the scatter of some input parameters are just estimated based on no or
very little measurement data. If these parameters turn out to be very important for the
reliability of the design, this indicates that lab tests should be done to collect more data about
that input parameter. If the current design is sufficient, i.e. has an acceptably low failure
probability, and then there is typically the need to save money without sacrificing the
achieved reliability. In this case, the manufacturing requirements for the input parameters can
be relaxed and a possibly coarser or cheaper manufacturing process can be chosen, or the
quality assurance requirements for those parameters can be relaxed. This typically leads to
huge savings in the manufacturing process. ’
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